
IARCS Instructional Course in Computer Science
Sacred Hearts College, Tirupattur

Algorithms and Data Structures

December 11-12, 2003

Venkatesh Raman

The Institute of Mathematical Sciences
C. I. T. Campus

Chennai - 600 113.
email: vraman@imsc.res.in



1 Introduction to Algorithm Design and Analysis

1.1 Introduction

An algorithm is a receipe or a systematic method to solve a problem. It takes some inputs
(some algorithms may not take any input at all), performs a well defined sequence of steps,
and produces some output. Once we design an algorithm, we need to know how well it
performs on any input. In particular we would like to know whether there are better algo-
rithms for the problem. An answer to this first demands a way to analyze an algorithm in a
machine-independent way. Algorithm design and analysis form a central theme in computer
science.

We illustrate various tools required for algorithm design and analysis through some ex-
amples.

1.2 Select

Consider the problem of finding the smallest element from a given list A of n integers.
Assuming that the elements are stored in an array A, the pseudocode1 Select(A[1..n]) below
returns the smallest element in the array locations 1 to n.

function Select(A[1..n])

begin

Min := A[1]

for i=2 to n do

if A[i] < Min then Min := A[i]

endfor

return (Min)

end

It is easy to see that finally the variable Min will contain the smallest element in the list.

Now let us compute the number of steps taken by this algorithm on a list of n elements
in the worst case. The algorithm mainly performs two operations: a comparison (of the type
A[i] < Min) and a move (of the type Min := A[i]). It is easy to see that the algorithm
performs n− 1 comparisons and at most n moves.

Remarks:

1. If we replace ‘Min := A[i]’ by Min := i and A[i] < Min by A[i] < A[Min] after
replacing the initial statement to Min := 1 and finally return A[Min], the algorithm
will still be correct. Now we save on the kind of moves Min := A[i] which may be
expensive in reality if the data stored in each location is huge.

2. Someone tells you that he has an algorithm to select the smallest element that uses at
most n− 2 comparisons always. Can we believe him?

No. Here is why. Take any input of n integers and run his algorithm. Draw a graph
with n vertices representing the given n array locations as follows. Whenever algorithm

1A pseudocode gives a language-independent description of an algorithm. It will have all the essence of
the method without worrying about the syntax and declarations of the language. It can be easily converted
into a program in any of your favourite language.

2



detects that A[i] < A[j] for some pair of locations i and j, draw a directed edge i← j
between i and j. Now at the end of the execution of the algorithm on the given input,
we will have a directed graph with at most n − 2 edges. Since the graph has at most
n− 2 edges, the underlying undirected graph is disconnected. Due to the transitivity
of the integers, each connected component of the graph does not have a directed cycle.
Hence each component has a sink vertex, a vertex with outdegree 0. Each such vertex
corresponds to a location having the smallest element in its component. Note also
that the algorithm has detected no relation between elements in these sink locations
(otherwise there will be edges between them). Let x and y be integers in two such
locations. If the algorithm does not output x or y as the answer, then the algorithm
is obviously wrong as these are the smallest elements in their components. If the
algorithm outputs x as the answer, we decrease the value of y to some arbitrarily
small number. Even now the execution of the algorithm would be along the same path
with the same output x which is a wrong answer. In a similar way, we can prove the
algorithm wrong even if it outputs y as the answer.

An alternate way to see this is that an element has to win a comparison (i.e. must be
larger than the other element) before it can be out of consideration for the smallest.
In each comparison, at most one element can win, and to have the final answer, n− 1
elements must have won comparisons. So n− 1 comparisons are necessary to find the
smallest element.

This fact also indicates that proving a lower bound for a problem is usually a nontrivial
task. This problem is one of the very few problems for which such an exact lower bound
is known.

1.3 Selectionsort

Now suppose we want to sort in increasing order, the elements of the array A. Consider
the following pseudocode which performs that task. The algorithm first finds the smallest
element and places it in the first location. Then repeatedly selects the smallest element from
the remaining elements and places it in the first remaining location. This process is repeated
n− 1 times at which point the list is sorted.

Procedure Selectsort(A[1..n])

begin

for i=1 to n-1 do

Min := i

for j= i+1 to n do

if A[j] < A[Min] then Min := j

endfor

swap (A[i], A[min])

endfor

end

Here swap(x, y) is a procedure which simply swaps the two elements x and y and which
can be implemented as follows.

Procedure swap(x,y)

3



begin

temp := x

x := y

y := temp

end

Note that the inner for loop of the above sorting procedure is simply the Select procedure
outlined above. So the code can be compactly written as

Procedure Selectsort(A[1..n])

begin

for i=1 to n-1 do

min := Select(A[i,n])

swap(A[i], A[min])

endfor

end

Now let us analyse the complexity of the algorithm in the worst case.
It is easy to see that the number of comparisons performed by the above sorting algorithm

is
∑n−1

i=1 (n − i) as a call to Select(A[i, n]) takes n − i comparisons. Hence the number of
comparisons made by the above algorithm is n(n − 1)/2. It is also easy to see that the
number of moves made by the algorithm is O(n) 2. Thus Selectsort is an O(n2) algorithm.

1.4 Merge

In this section, we look at another related problem, the problem of merging two sorted lists
to produce a sorted list. You are given two arrays A[1..n] and B[1..n] of size n each, each
containing a sequence of n integers sorted in increasing order. The problem is to merge them
to produce a sorted list of size 2n.

Of course, we can use the Selectsort procedure above to sort the entire sequence of 2n
elements in O(n2) steps. But the goal is to do better using the fact that the sequence of
elements in each array is in sorted order. The following procedure merges the two arrays
A[1..n] and B[1..n] and produces the sorted list in the array C[1..2n].

Procedure Merge(A[1..n], B[1..n], C[1..2n])

begin

i := 1; j := 1; k := 1;

while i <= n and j <= n do

if A[i] < B[j] then

C[k] := A[i]; i := i+1

else

C[k] := B[j]; j := j+1

endif

k := k+1

endwhile

if i > n then

while j <= n do

C[k] := B[j]; k := k+1; j := j+1

2A function f(n) is O(g(n)) if there exists constants c and N such that f(n) ≤ cg(n) for all n ≥ N

4



endwhile

else

while i <= n do

C[k] := A[i]; k := k+1; i := i+1

endwhile

endif

end

It is easy to see that finally the array C[1..2n] contains the sorted list of elements from
A and B.

It is also easy to see that the algorithm performs at most 2n − 1 comparisons and 2n
moves. Can you find out when the algorithm will actually perform 2n− 1 comparisons?

Recall that initially we were toying around with an O(n2) algorithm (Selectsort) and now
we have managed to complete the task in O(n) time simply using the fact that each list is
sorted already.

1.5 Mergesort

The following algorithm gives another method to sort an array of n integers. This method
uses the Merge routine described above. The algorithm calls itself several times (with differ-
ent arguments) and hence it is a recursive algorithm. Contrast with Selectsort which called
some other algorithm.

Recursion is a powerful tool both in algorithm design and also in algorithm descrip-
tion. As we will see later, the following recursive algorithm is significantly better than the
Selectsort algorithm described earlier.

Procedure Mergesort(A[1..n])

begin

if n <> 1 then

Mergesort(A[1..n div 2])

Mergesort(A[n div 2 + 1.. n])

Merge(A[1..n div 2], A[n div 2 +1.. n], B[1..n])

for i=1 to n do A[i] := B[i]

endif

The algorithm basically divides the given array into two halves. Recursively sorts the two
halves and then uses the Merge routine to complete the sort. The Merge routine actually
produces the merged list into a different array B. Hence in the last statement, we copy back
the elements of B into the array A.

This method is also an example of the classic ‘divide and conquer’ algorithm design
technique. The idea here is to divide the problem into many parts, solve each part separately
and then combine the solutions of the many parts.

Note that though the actual execution of the recursive calls go through many more
recursive calls, we don’t have to worry about them in the description. Thus a recursive
program usually has a compact description. Note also that the first step in the program is
the end (or tail) condition. It is important to have tail condition in a recursive program.
Otherwise the program can get into an infinite loop.

Now let us get into the analysis of the algorithm. Again for simplicity let us count the
number of comparisons made by the algorithm in the worst case. Note that the recursion
introduces some complication as we cannot do the analysis as we did so far. But it is easy

5



to write what is called a recurrence relation for the number of comparisons performed. Let
T (n) be the number of comparisons made by the algorithm. Then it is easy to see that

T (1) = 0

and
T (n) = T (bn/2c) + T (dn/2e) + n− 1, for n ≥ 2

since the Merge routine performs at most n−1 comparisons to merge two lists one of size
bn/2c and the other of size dn/2e (Note that the way we described, the Merge routine merges
two lists each of size n using at most 2n − 1 comparisons. But it can be easily modified to
merge a list of size m and one of size n using at most m + n− 1 comparisons.)

Now, how do we solve such a recurrence relation? The study of recurrence relations
forms a major part in the analysis of algorithms. Note that, for now, we are not interested
in solving the recurrence relation exactly. We will be happy with a tight enough estimate
which will help us compare with Selectsort. To solve the recurrence relation, let us first
assume that n = 2k for some integer k, i.e. n is an exact power of 2. Then happily, we will
have

T (n) = 2T (n/2) + n− 1, for n ≥ 2.

Now expand the recurrence relation using the fact that T (n/2) = 0 if n = 2 or it is 2T (n/4)+
n/2 − 1 otherwise. If we keep expanding the relation all the way until we get the term in
the right hand side to be T (1) for which we know the answer, we will have

T (n) = (n− 1) + (n− 2) + (n− 4) + ...(n− 2k−1)

Since k = log2 n 3, we have T (n) = nk − n + 1 = n log n− n + 1.
What if n is not a power of 2? Let 2k < n < 2k+1. Using our Select routine, first find the

largest element in the given array. Then add 2k+1 − n dummy elements equal to a number
larger than the largest to the array make the number of elements in the array 2k+1. Now we
apply the Mergesort routine to this array. Clearly the first n elements of the sorted list form
the required sorted output.

Now from our earlier analysis, we have that the algorithm performs at most 2k+1(k +
1) − 2k+1 + 1 + n − 1 comparisons (the n − 1 comparisons are to find initially the largest
element in the list). Now since k < log n, we have that the algorithm performs at most
2n(log n + 1) − n + 1 + n − 1 which is 2n(log n + 1) comparisons. So Mergesort is an
O(n log n) algorithm.

Recall that Selectsort performed n(n − 1)/2 comparisons in the worst case. It is easy
to see that Mergesort outperforms Selectsort for n ≥ 32. You should note that Selectsort
performs significantly fewer moves than Mergesort. Also Mergesort uses extra storage
space of up to n locations (for the B array) whereas Selectsort uses very few extra variables.
Despite all this, Mergesort performs significantly better compared to Selectsort.

It is also known that any sorting algorithm by comparisons must perform at least n log n
comparisons in the worst case. So Mergesort is, in some sense, an optimal sorting algorithm.

Exercise 1:

3hereafter we will omit the base 2 when we talk about log n and assume that all logarithms are to the
base 2

6



1. Given an array of n integers, suppose you want to find the largest as well as the smallest
in the array. Give an algorithm (a simple pseudocode) to perform this task. How many
comparisons does your algorithm use in the worst case?

[There is a simple divide and conquer algorithm that performs 3dn/2e− 1 comparsons
in the worst case. But as a warm up, you may want to start with a simpler algorithm
which could perform more comparisons.]

2. Given a sorted array A of integers and an integer x, suppose you want to search whether
x is in the given array.

(a) One method (which does not use the fact that the given array is sorted) is to
simply scan the entire array checking whether any element is equal to x. Write a
simple pseudocode for this method. How many comparisons does your algorithm
use?

(b) Another popular method called binary search works as follows.

Compare x with the middle element A[n div 2]. If x ≤ A[n div 2] then
recursively search in the first half of the array. Otherwise recursively
search for x in the second half of the array.

Write a proper pseudocode (with tail conditions etc) for this method, and find
the number of comparisons performed by this algorithm. Can you modify the
algorithm into a non-recursive one?

1.6 Summary

In this section, we have dealt with various algorithm design and analysis tools through some
simple but important data processing problems: Selecting the largest element from a list,
Sorting a list and Merging two sorted lists. Through these examples, we introduced the
‘big Oh’ (O) notation, recursive algorithms, divide and conquer algorithm design technique,
recurrence relations, algorithm analysis and lower bounds.

2 Introduction to Data Structures

The way in which the data used by the algorithm is organized will have an effect on how
the algorithm performs. In some algorithms a certain kind of operations on the input are
more frequently used. So a clever method to organize the data to support those operations
efficiently will result in the overall improvement of the algorithms. What is the efficient way
to organize the data to support a given set of operatons is the question addressed in the
study of Data Structures.

2.1 Arrays and Linked Lists

Throughout the last section, we assumed that the input is an array where the elements are
in contiguous locations and any location can be accessed in constant time. Sometimes it
may be an inconvenience that the elements have to be in contiguous locations. Consider the
binary search example in the last section. Suppose you discover that the given element x is
not in the sorted array, and you want to insert it in the array. Suppose you also find that
x has to be in the fourth location to maintain the sorted order. Then you have to move all
elements from the fourth location onwards one position to their right to make room for x. It

7



would have been nice if we can simply grab an arbitrary empty cell of the array, insert the
new element and somehow logically specify that that element comes after the third location
and before the present fourth location. A linked list has the provision to specify next and
previous elements in such a way.

A linked list is a data structure in which the objects are arranged in a linear order. Unlike
in an array where the linear order is determined by the array indices, the order in a linked
list is determined by a pointer in each object. So each element x of a linked list has two
fields, a data field x.key and a pointer field x.next. The pointer field points to the location
containing (i.e. gives the address of) the next element in the linear order. The next pointer
of the last element is NIL. An attribute head[L] points to the first element of the list L. If
head[L] = NIL then the list is empty.

The following psuedocode gives a procedure to search for an element x in a given linked
list L.

Procedure listsearch(L,x)

begin

p := head[L]

while p <> NIL and p.key <> x

p := p.next

endwhile

if p.key = x return(p)

else return(’x not found’)

end

The following psuedocode gives a procedure to insert an element x not present in the
given sorted list of elements arranged in a linked list.

Procedure sortedlistinsert(L,x)

begin

p := head[L]

if p.key >= x then

new(cell)

cell.key := x; cell.next := p;

head[l] := cell

else

while p <> NIL and p.key < x

q := p

p := p.next

endwhile

new(cell)

cell.key := x; cell.next := p;

q.next := cell

endif

end

It is easy to see that the insert procedure takes only constant time after the position to
be inserted is found by the initial scan (the while loop).

Coming back to the binary search example, we observed that if the sorted list is arranged
in a linked list then insertion is easy after the position to be inserted is found. But note
that doing a binary search in a linked list is significantly harder. This is because the access

8



to any element in the linked list is always through the header head[L]. So if we have to
search as well as insert, then a more sophisticated data structure is required to perform
these operations in O(log n) time. We will see more about this later.

With each element x in the list, we could also have another pointer x.prev pointing to the
location of the previous element. Such a list is called doubly linked list. If we have previous
pointers available, we need not have used the variable q in the above code. We could have
obtained the final q using p.prev.

2.1.1 Graph Representations

In this section we will give two representations to represent a graph and discuss their advan-
tages and disadvantages for various problems.

Adjacency Matrix
The standard way to represent a graph G is by its adjacency matrix A. If G has n vertices
1 to n, then A is an n by n matrix with A[i, j] = 1 if the vertex i and j are adjacent and 0
otherwise. If there are m edges in the graph, then the adjacency matrix will have 1 in 2m
locations.

Adjacency matrix can be represented easily as a two dimensional array as an array [1..n]
of arrays [1..n] of integers or equivalently as an array [1..n, 1..n] of integers. We can access
Ai,j by calling A[i, j].

Adjacency List
In an adjacency list, we simply have an array A[1..n] of linked lists. The linked list A[i] has
a list of vertices adjacent to the vertex i, arranged in some order (say, increasing order).

Essentially each linked list in an adjacency list corresponds to the list of entries having 1
in the corresponding row of the adjacency matrix.

There are several graph operations for which an adjacency matrix representation of a
graph is better and there are some for which an adjacency list representation is better. For
example, suppose we want to know whether vertex i is adjacent to vertex j. In an adjacency
matrix, this can be performed in constant time by simply probing A[i, j]. In an adjacency
list, however, we have to scan the i-th list to see whether vertex j is present or scan the j-th
list to see whether vertex i is present. This could potentially take O(n) time (if for example,
the graph is n/2-regular).

On the other hand, suppose you want to find all the neighbours of a vertex in a graph.
In an adjacency matrix, this takes O(n) time whereas in an adjacency list this takes time
proportional to the degree of that vertex. This could amount to a big difference in a sparse
graph (where there are very few edges) especially when the neighbours of all vertices have
to be traversed. We will see more examples of the use of adjacency list over an adjacency
matrix later as well as in the exercises below.

Exercise 2.1:

1. It is well known that a graph is Eulerian if and only if every vertex has even degree.
Give an algorithm to verify whether a given graph on n vertices and m edges is Eulerian.
How much time does your algorithm take in the worst case if (a) the graph is given by
its adjacency matrix and (b) graph is given by its adjacency list?

2. A Directed graph can be represented by an adjacency matrix A in a similar way:

9



A[i, j] = 1 if there is an edge from i to j
= −1 if there is an edge from j to i and
= 0 if there is no edge between i and j.

Tournaments form a special class of directed graphs where there is a directed edge
between every pair of vertices. So we can modify the definition of an adjacency matrix
of a tournament as

A[i, j] = 1 if there is an edge from i to j
= 0 if there is an edge from j to i

In a very similar way, we can also represent a tournament by an adjacency list as an
array of linked lists where list i contains all vertices j to which there is a directed edge
from i.

Given a tournament, your problem is to find a hamiltonian path (a directed path
passing through all vertices exactly once) in the tournament by the following three
algorithms.

For each of the three algorithms, write a psuedocode and analyse the running time of
your algorithm assuming (a) the tournament is represented by an adjacency matrix as
above and (b) the tournament is represented by an adjacency list.

(a) (By induction and linear search) Remove any vertex x of the tournament. Find
a hamiltonian path P in the resulting tournament recursively. Find, in P , two
consecutive vertices i and j such that there is an edge from i to x and from x to
j by finding the edge direction between x and every vertex of P . Insert x in P
between i and j to obtain a hamiltonian path in the original graph.

(b) (By induction and binary search) The algorithm is the same as above except to
find the consecutive vertices i and j, try to do a binary search.

(c) (By divide and conquer technique) It is known that every tournament on n vertices
has a mediocre vertex, a vertex whose outdegree and indegree are at least n/4.

Find a mediocre vertex v in the given tournament (use any naive and simple
method for this). Find the set of vertices I from which there is an edge to v
and the set of vertices O to which there is an edge from v. I and O individually
induce a tournament. Find hamiltonian path P and Q recursively in I and in O
respectively. Insert v between P and Q to obtain a hamiltonian path in the given
tournament.

How much time does your algorithm take if a mediocre vertex can be found in a
tournament in O(n) time?

2.2 Trees

In a linked list, we saw that though the actual memory locations may be scattered, pointers
can be used to specify a linear order among them. It turns out that using pointers one can
represent structures that form more than a linear order.

A binary tree, or more specifically a rooted binary tree is another fundamental and useful
data structure. A binary tree T has a root[T ]. Each node or an element x in the tree has
several fields including the data field key[x] along with several pointers. The pointer p[x]
refers to the parent of the node x (p[x] is NIL for the root node), l[x] is a pointer to the left
child of the node x, and similarly r[x] is a pointer to the right child of the node x. If node x

10



has no left child then l[x] is NIL and similarly for the right child. If root[T ] is NIL then the
tree is empty.

There are also several ways of representing a rooted tree where each node can have more
than two children. Since we will not be needing them in these lectures, we won’t deal with
them here.

2.3 Stacks and Queues

From the fundamental data structures arrays and linked list, one can build more sophisti-
cated data structures to represent the input based on the operations to be performed on the
input. Stacks and Queues are data structures to represent a set of elements where elements
can be inserted or deleted but the location at which an element is inserted or deleted is
prespecified.

Stack: In a stack, the element to be deleted is the one which is recently inserted. Insert into
a stack is often called a push operation and deletion from a stack is called a pop operation.
Essentially the push and the pop operation are performed at one end of the stack. The stack
implements the last-in-first-out or LIFO policy.

Queue: In a queue, the element to be deleted is the one which has been in the set for the
longest time. Insert into a queue is often called an enqueue operation and deletion from a
queue is called a dequeue operation. If the enqueue operation is performed at one of the
queue the dequeue operation is performed at the other end. The queue implements the
first-in-first-out or FIFO policy.

Implementation of Queues and Stacks: It is easy to implement Queues and Stacks
using arrays or linked list. To implement a stack, we will use a special variable to keep
track of the top of the list. During a push operation, the top pointer is incremented and the
new element is added. Similarly during a pop operation, the element pointed to by the top
pointer is deleted and the top pointer is decremented.

Similarly to implement a queue, we need to keep track the head and tail of the list. During
an enqueue operation, the tail pointer is incremented and the new element is inserted. During
a dequeue operation, the element pointed to by the head pointer is deleted and the head
pointer is decremented.

2.4 Binary Search trees and Heaps

The structures we have defined so far simply give an implementation of a specific arrangement
of memory locations. In a typical usage of these structures, there is also some order among
the data fields of the elements in those locations. Binary Search Trees and Heaps are binary
trees where the data fields of the nodes in the binary tree satisfy some specific properties.

2.4.1 Binary Search Trees

A binary search tree is a binary tree where each node x has a key key[x] with the property
that key[x] is larger than or equal to key[y] for all nodes y in the left subtree of x, and less
than or equal to key[z] for all nodes z in the right subtree of x. There is a pointer to the
root of the binary search tree.

11



Suppose all the given n integers are arranged in a binary search tree, there is a clever
way to search for an element y. We compare with y with the key[root]. If y = key[root] we
stop. Otherwise if y < key[root] then we can abandon searching in the right subtree of root
and search only in the left subtree and similarly if y > key[root]. This procedure can be
applied recursively for the appropriate subtree of the root and the entire search will involve
traversing a root to leaf path. If we reach a NIL pointer without finding y, then y is not in
the list. So the time taken by the above algorithm is proportional to a root to leaf path.
This is the height of the tree in the worst case.

If the binary tree is a complete binary tree where the tree is filled on all levels except
possibly the lowest, which is filled from the left up to a point, then it is easy to see that such
a binary tree on n nodes has height O(log n). So if the given n elements are arranged in a
binary search tree on a complete binary tree, then searching for an element y in that list
takes O(log n) time. In fact, if we reach a NIL pointer without finding y, the NIL pointer
specifies the location where y has to be if it were there in the list. So we can simply insert
y in that location (updating appropriate pointers) as we would insert an element in a linked
list. So insert also takes O(log n) time in such a binary search tree.

There is one catch. Suppose we start from a binary search tree where the underlying
binary tree is complete and keep inserting elements. After a few insertions, the tree will no
longer remain complete and so height may no longer be O(log n). The solution is to keep
the tree ‘balanced’ after every insertion. There are several balanced binary search trees in
the literature – implementations of insert or delete on these trees involve more operations to
keep the tree balanced after a simple insert or delete.

2.4.2 Heaps

A (min) heap is a complete binary tree (where all levels of the tree are filled except possibly
the bottom which is filled from the left up to a point) where each node x has a key key[x]
with the property that key[x] is less than or equal to the key value of its children. There is a
pointer to the root as well as the first empty (NIL) location at the bottom level of the heap.

It follows that the root of the heap contains the smallest element of the list. The key
values in the tree are said to satisfy the heap order.

Since a heap is stored in a complete binary tree, the key values of all the nodes can be
stored in a simple array by reading the key values level by level.

To insert an element into a heap, insert it at the first empty location at the bottom
level. Compare it with the parent and swap it with the parent if it doesn’t satisfy the heap
property with its parent. Then this procedure is recursively applied to the parent until the
heap property is satisfied with the node’s parent. The execution simply involves traversing
a root to leaf path and hence takes O(log n) time since the height of the tree is O(log n).
To delete the minimum element from the heap, simply delete the root and replace it with
the element at the last nonempty node of the bottom level. Also the pointer to first empty
location at the bottom level is pointed to this node. Now there may be a heap order violation
at the root. Again this is fixed by traversing down the tree up to a leaf. This process also
takes O(log n) time.

Thus heap is also an efficient data structure to support a priority queue where elements
are inserted and only the smallest element is deleted. We will come across graph problems
where the only operations performed on the data list are to insert an integer into the list
and to delete the smallest element in the list. For such applications a heap will be a useful
data structure to represent the data list.

12



Exercise 2.2:

1. Given a binary tree, there are various ways in which we can traverse all nodes of the
tree.

A preorder traversal of a binary tree visits the root, followed by a preorder traversal of
the left subtree of the root, followed by a preorder traversal of the right subtree.

An inorder traversal of a binary tree recursively performs an inorder traversal of the
left subtree of the root, followed by the root, followed by an inorder traversal of the
right subtree of the root.

A postorder traversal of a binary tree recursively performs a postorder traversal of the
left subtree of the root, followed by a postorder traversal of the right subtree of the
root, followed by the root.

Write psuedocodes for each of the three traversals of a binary tree (with proper end
condition etc), and analyse their running time.

2. Given n integers arranged in a binary search tree, how can we produce the integers in
sorted order in O(n) time?

3. Given an array of n integers, it can be considered as the key values of a complete binary
tree read level by level from left to right. Such an arrangement in a complete binary
tree can be made into a heap as follows:

Starting from the bottom level to the root level, make all subtrees rooted at
every node in that level a heap.

The subtree rooted at a node x in a level can be made into a heap as follows. Both
subtrees of x form heaps by themselves. If key[x] is smaller than or equal to the key
values of its children, then the subtree rooted at x is already a heap. Otherwise, swap
key[x] with the key value of the smaller child and continue down this process from the
node containing the smaller child.

Write a proper psuedocode for this algorithm. Prove that this algorithm takes O(n)
time in the worst case. (Note that in the array representation of the complete binary
tree, the left child of a node at position x is at position 2x and the right child at
position 2x + 1. Similarly the parent of a node at position x is at position bx/2c.)

4. Give an O(log n) algorithm to perform the following operations on a heap.

(a) To delete an arbitrary element specified by its location in the tree.

(b) To replace the value of an element by a smaller value.

5. Given an array of n integers, give an algorithm to sort them into increasing order using
the heap data structure in O(n log n) time. (Hint: In the first step, convert the array
into a representation of a heap in O(n) time using the previous exercise. The smallest
element will be in the first location. Then if you perform some heap operation n times,
you get a sorted list.)

13



2.5 Summary

In this section, we had an introduction to fundamental data structures like arrays, linked
lists, trees, stacks, queues, heaps and binary search trees. In graph representations, we
saw an application of arrays versus linked lists. We will see applications of the other data
structures in subsequent sections.

3 Graph Search Algorithms

In this section, we will look at algorithms for several fundamental problems on graphs. In
the initial step of these algorithms, the vertices and edges of the graph are traversed in a
specific way. There are two basic methods to systematically visit the vertices and edges of
a graph: breadth-first-search and depth-first-search. We begin with the description of these
methods.

3.1 Breadth First Search

Here, we visit the vertices of the graph in a breadthwise fashion. The idea is to start from a
vertex, and then visit all its neighbours and then visit the neighbours of its neighbours and
so on in a systematic way. A queue will be an ideal data structure to record the neighbours
of a vertex (at the other end) once a vertex is visited.

See pages 469-472 of [3] for a more detailed description.
Note that the way the BFS is described in those pages, the search will visit only vertices

reachable from the vertex s. If the graph is disconnected, then one can pick an arbitrary
vertex from another component (i.e. a vertex which is still coloured white at the end of
BFS(s)) and grow a BFS starting at that vertex. If this process is repeated until no vertex
is coloured white, the search would have visited all the vertices and edges of the graph.

3.1.1 Applications

The following properties of the BFS algorithm are useful.

1. For vertices v reachable from s, d[v] gives the length of the shortest path from s to v.
Furthermore, a shortest path from s to v can be obtained by extending a shortest path
from s to π[v] using the edge (π[v], v).

Though this result is quite intuitive from the way a BFS algorithm works, it can be
proved rigorously using induction.

2. For a graph G = (V, E) with source s, the predecessor graph Gπ = (Vπ, Eπ) defined by
Vπ = {v ∈ V : π[v] 6= NIL} ∪ {s} and Eπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}} is a tree
called the breadth-first tree. Furthermore, for all vertices reachable from s, and for all
vertices v ∈ Vπ, the unique simple path from s to v in Gπ is a shortest path from s to
v in G.

3. If (i, j) ∈ E is not an edge in the breadth first tree, then either d[i] = d[j] or d[i] =
d[j] + 1 or d[i] = d[j]− 1.

Connectivity: To verify whether the given graph G is connected, simply grow a BFS start-
ing at any vertex s. If any vertex is still coloured white after BFS(s), then G is disconnected.
Otherwise G is connected. Note that by growing a BFS starting at white vertices, we can

14



obtain also the connected components of the graph. Thus in O(n+m) time it can be verified
whether a given graph on n vertices and m edges is connected and if it is not, the connected
components of the graph can also be obtained in the same time.

Shortest Paths: As we have observed in properties 1 and 2 above, the length of the shortest
path4 from a given vertex s can be obtained simply from a BFS search. In addition, BFS
also outputs a breadth-first tree from which one can also obtain a shortest path from s to
every vertex reachable from s.

Spanning Forest: To find a spanning tree of a connected graph, simply perform a breadth-
first search starting at any vertex. The breadth first tree gives a spanning tree of the graph
if the graph is connected. If the graph is disconnected, we obtain a breadth-first forest which
is a spanning forest.

Exercise 3.1:

1. What is the running time of BFS if its input graph is represented by an adjacency
matrix and the algorithm is modified to handle this form of input?

2. Give an efficient algorithm to determine if an undirected graph is bipartite. (Hint:
Property 3 discussed above may be useful here.)

3. Give an efficient algorithm to find the shortest cycle in the graph. How much time
does your algorithm take?

3.2 Depth First Search

Here the idea is to visit the vertices in a depthwise fashion. Starting from a vertex, we
first visit ONE of its neighbours, then one of ITS neighbours and so on until the current
vertex has no unvisited neighbours. At that point, we backtrack and continue visiting the
next neighbour of the earlier vertex and so on. A stack (Last in First out) is a good data
structure to record the neighbours of the visted vertices by this procedure. See pages 477-479
of [3] for more details and some applications of DFS (pages 485-487).

One of the early applications of DFS is to obtain strongly connected components of a
graph. The readers are directed to the books in the References section for details of this.

Exercise 3.2:

1. Give an algorithm that determines whether or not a given undirected graph on n
vertices contains a cycle. Your algorithm should run in O(n) time (independent of the
number of edges in the graph).

2. Another way to perform topological sorting on a directed acyclic graph on n vertices
and m edges is to repeatedly find a vertex of in-degree 0, output it, and remove it all
of its outgoing edges from the graph. Explain how to implement this idea so that the
algorithm runs in O(n + m) time. What happens to this algorithm if the graph has
cycles?

4Here, we assume that the edges of the graph are unweighted. The shortest path problem on weighted
graphs is discussed in the next section.

15



3.3 Summary

In this section, we looked at the basic search procedures in a graph, Breadth First Search
(BFS) and Depth First Search (DFS). We saw applications of the data structures Stacks and
Queues in these procedures. As applications of BFS and DFS, we described algorithms to
test whether a given graph is connected, and if so to find the spanning tree of the graph;
to find the connected components and/or the spanning forest of the graph if the graph is
disconnected; to find the length of the shortest path from a source vertex to every vertex
reachable from it; and to perform a topological sort of a directed acyclic graph. Using BFS
and DFS, we observed that these problems can be solved in O(m + n) time on a graph with
n vertices and m edges.

4 Efficient Algorithms on Weighted graphs

Graph theory, and graph algorithms in particular, have several real-world applications. In
modeling some of these applications as graphs, typically the edges of the graph have some
real weights - these could denote distances between two points and/or some cost. The goal
is to find some optimum structure (with respect to the weights) in the weighted graph.

For example, in the last section we saw that in a connected graph, a spanning tree as well
as the shortests paths to all vertices from a source can be found in O(m+n) time. However,
when the edges have weights, the shortest path problem gets a little complicated. Similarly,
instead of any spanning tree, a spanning tree with minimum weight (the total weight of all
edges in the tree) is of interest in some applications. We will look at algorithms for these
problems in this section. Though we will not specifically mention about the representation
of the graph, it sufficies to represent it by an adjacency list where the weight of an edge (i, j)
is kept with the vertex j in the adjacency list i as well as with the vertex i in the adjacency
list j.

4.1 Minimum Spanning Tree

Given an undirected graph with weights on the edges, the problem here is to find, among all
spanning trees, one with minimum (total) weight. Note that there may be several spanning
trees with the same weight. We give two classical algorithms which follow a ‘greedy‘ approach
to find the minimum spanning tree.

Greedy heuristic is a well known heuristic to solve optimization problems. It advocates
making the choice that is the best at the moment - i.e. a locally optimum choice. Such a
strategy is not generally guaranteed to find globally optimum solution. For the minimum
spanning tree problem, however, we can prove that certain greedy heuristics do yield a
spanning tree with minimum weight.

4.1.1 Kruskal’s algorithm

An obvious greedy strategy is to sort the edges by their weights and to construct a spanning
tree by considering edges in that order and adding those that do not form a cycle to the
already constructed graph (forest).

This is the essence of Kruskal’s algorithm. This algorithm actually produces a minimum
spanning tree due to the following reason (which can be easily proved rigorously).

• Let G = (V, E) be a connected undirected graph with each edge having a real valued
integer as its weight. Let A be a subset of E that is in some minimum spanning tree for

16



G. Let C be a connected component (a tree) in the forest GA = (V, A), and let (u, v)
be an edge with minimum weight among those connecting C to some other component
in GA. Then A ∪ {(u, v)} is included in some minimum spanning tree for G.

The first sorting step can be performed in O(m log m) time using any of the efficient
sorting algorithms described in the first section. After that at any stage we have a forest of
edges spread over several components. When a new edge is considered, it is added to the
forest only if it joins vertices from two different components of the forest. There are efficient
data structures to maintain such a structure (forest) in which one can check whether or
not an edge is inside one component in O(log m) time. Thus the overall algorithm can be
implemented in O(m log m) time.

4.1.2 Prim’s algorithm

Kruskal’s algorithm constructs a spanning tree starting from a forest of n trees (vertices),
by adding at every iteration a minimum weight edge connecting two components. At any
stage of the Kruskal’s algorithm, there is a forest.

Prim’s algorithm, on the other hand, always has a connected component (a tree) C of
edges and grows the tree by adding a minimum weight edge connecting C to the rest of the
graph. Initially C is a single vertex s from which the tree is grown.

The correctness of Prim’s algorithm also follows from the reason mentioned above for the
correctness of Kruskal’s algorithm.

To implement Kruskal’s algorithm, at every stage we need to find a minimum weight
edge connecting C to the rest of the graph. Initially this is the edge that has the minimum
weight among those incident on the starting vertex s. But at any intermediate stage C has
several vertices, and each of those vertices may have several edges incident with it.

Suppose, for every vertex u not in C, we keep track of the weight d[u] (and also the other
end point) of the minimum weight edge connecting u to a vertex in C (d[u] will be ∞ if u is
not adjacent to any vertex in C). Then the vertex p (and the corresponding edge) with the
minimum d[p] among all those vertices not in C is the next vertex (and the corresponding
edge) to be included in C according to Kruskal’s algorithm. Once the vertex p is included in
C, the d[] values of some vertices (those adjacent to p) need to be updated (more specifially
decreased). Thus we need a data structure to maintain a set of at most n integers where
the operations we will perform at any stage are a delete the minimum element - deletemin,
and decrease the value - decreasekey for some elements. It is easy to see that on a graph on
n vertices and m edges, overall there will be n− 1 deletemin operations and m decreasekey
operations (why?).

A heap is an appropriate data structure to implement these operations. As we have
already seen a deletemin or a decreasekey operation can be performed in O(log n) time in a
heap. Thus Kruskal’s algorithm can be implemented to take O(m log n) time.

There are more sophisticated variations of the heap (Fibonacci Heap) that takes O(m)
time to perform a sequence of m decreasekey operations while performing O(n log n) time
to perform n deletemin operations. Thus Kruskal’s algorithm can be made to run in O(m +
n log n) time. Note that for a dense graph where m is, say, n2/4, the former implementation
takes O(n2 log n) time whereas the latter implementation takes O(n2) algorithm.

Notice the role played by the data structures in the implementation of algorithms. Both
implementations above implement the same algorithm, but improvements are obtained by
using more efficient data structures.

17



4.2 Shortest Paths

As we saw in the last section, the breadth-first-search method gives the shortest path from
a source vertex in an unweighted graph (we could view the weight of each edge to be unit).
There the length of a path is simply the number of edges in the path. In a weighted graph,
however, the length of a path is the sum of the weights of the edges in the path.

It turns out that Prim’s algorithm to find the minimum spanning tree starting from the
vertex s, actually constructs the shortest path tree from the vertex s (if the edge weights
are non-negative). That is, the unique path from s to a vertex v in the minimum spanning
tree constructed by Prim’s algorithm is the shortest This is essentially Dijkstra’s algorithm
to find the shortest paths from a source.

There are several variants to the problem. If some edge weights are negative, there is
an algorithm due to Bellman and Ford that finds the shortest paths from a single source.
Sometime we may be interested in the shortest paths between every pair of vertices in the
graph. This can be solved by applying the single source shortest path algorithm once for
each vertex; but it can usually be solved faster, and its structure is of interest on its own
right.

See the references for more details of the algorithms for the variants.

4.3 Summary

In this section, we looked at algorithms for Shortest Paths and Minimum Spanning Tree on
weighted graphs. Along the way we also saw the role of data structures in designing efficient
algorithms; in particular, we saw an application of heaps. We also came across the greedy
heuristic - an algorithm technique useful for designing exact or approximate solutions for
optimization problems.

5 NP-completeness and Coping with it

Each of the graph (and even other) problems we have seen so far has a very efficient algorithm
- an algorithm whose running time is a polynomial in the size of the input.

Are there problems that don’t have such an efficient algorithm? For example, we saw
in the second section that we can test whether a graph on n vertices and m edges is Eu-
lerian in O(m + n) time. How about checking whether a given graph is Hamiltonian? I.e.
whether the graph has a simple path which visits all vertices exactly once? The lack of a nice
characterization (as for Eulerian graphs) for Hamiltonian graphs apart, there is no efficient
algorithm for testing whether a graph is hamiltonian. All known algorithms are essentially
brute force, checking all possible paths in the graph, and take roughly O(nn) time. This
essentially means that to solve this problem for a graph even on 50 vertices on today’s power-
ful computers will take several centuries. Hence exponential time algorithms are considered
infeasible or impractical in Computer Science. In practice, it also turns out that problems
having polynomial time algorithms have a very low degree (< 4) in the runtime of their
algorithms. So one is always interested in designing polynomial time algorithms.

Can we show that the Hamiltonicity problem cannot have a polynomial time algorithm?
Answering such questions takes us to the arena of lower bounds which we briefly alluded to in
the first section. Unfortunately proving that a problem does not have an efficient algorithm
is more difficult than coming up with an efficient algorithm.

Fortunately some evidence to the fact the Hamiltonian problem cannot have a polynomial

18



time algorithm is known. In 1971, Cook[2] identified a class of decision problems5 called
NP-complete problems. The class NP consists of decisions problems for which there is a
polynomial time algorithm to verify the YES answer given a witness/proof for the answer.
The class of NP-complete problems are those NP problems for which if there is a polynomial
time algorithm to compute the answer, then all problems in the class NP have polynomial
time algorithms. Cook identified the (first) problem of Boolean CNF formula satisfiability
as an NP-complete problem proving from the first principles. Karp[9] in 1972 proved several
graph problems NP-complete reducing from the Satisfiability problem as well as from the
problems he proved NP-complete. Now there is a list of thousands of NP-complete problems.
A polynomial time algorithm for any one of them would imply a polynomial time algorithm
for all NP problems. Similarly a proof that any one of the NP-complete problems is not
polynomial time solvable would imply a proof that all the NP-complete problems are not
polynomial time solvable. Whether all NP problems have polynomial time algorithms is
an important open problem in the area of Algorithms and Complexity. Proving a problem
NP-complete is considered as an evidence that the problem is not efficiently solvable.

It is known that the decision version of the Hamiltonian Path problem (given an integer
k, is there a path of length at least k in the graph), along with Independent Set problem
(given an integer k, is there an independent set of size k?), Clique problem (is there a clique
of size k in a graph) and Dominating Set problem, is NP-complete.

Since the decision version of the Hamiltonian Path problem and that of the longest path
problem are the same, it follows that there is no efficient algorithm to find the longest path
in the graph. Contrast this to the problem of finding the shortest path in the graph (Lecture
2).
An Example Reduction:
Proving a problem NP-complete involves first proving that the problem is in NP and then
efficiently (in polynomial time) reducing an instance of a known NP-complete problem to an
instance of this problem in such a way that the original instance has a YES answer if and
only if the instance of this problem has a YES answer.

Suppose the problem, ‘Given a graph and an integer k, does it have a clique of size at
least k’ is already proved to be NP-complete. Using that result we will show that the Vertex
Cover problem - ‘Given a graph and an integer k, does it have a vertex cover (a set S of
vertices such that for every edge in the graph, one of its end points is in S) of size at most
k’ is NP-complete.

The fact that the vertex cover problem is in NP is easy to show. To verify that the given
graph has a vertex cover of size at most k, the witness is a set S of at most k vertices and
the verification algorithm has to simply go through all edges to make sure at least one of its
end points is in S.

To prove it is NP-complete, we reduce the Clique problem to this. Given a graph G on n
vertices (in which we are interested in solving the clique problem), construct its complement
Gc. G has a clique of size at least k if and only if Gc has an independent set of size at least
k. Gc has an independent set of size at least k if and only if Gc has a vertex cover of size at
most n− k (since the complement of an independent set is a vertex cover).

Thus G has a clique of size at least k if and only if Gc has a vertex cover of size at most
n− k. This shows that the Vertex Cover problem is NP-complete.

Essentially we have shown that if the Vertex Cover problem has a polynomial time
algorithm, then we can use that as a subroutine to solve the clique problem which has been

5For some technical reason, this entire NP-completeness theory deals only with decisions problems -
problems for which only a YES or NO answer is required. This is really not a constraint as most of the
optimization problems can be solved by calling an appropriate decision version a few times.

19



proved to be NP-complete already.
Note that quite often, the NP-complete reductions are much more complicated than this.

5.1 Coping with NP-completeness

Once a problem has been shown to be NP-complete, one stops the search for an efficient
polynomial time algorithm. However, the optimization versions of most of the NP-complete
problems are real world problem and so they have to be solved. There are various approaches
to deal with these problems. We will describe a few approaches here.

5.1.1 Approximate Algorithms

One approach to solve the optimization versions of the NP-complete problems is to look for
polynomial time approximate algorithms. One is interested in an approximate algorithm
whose solution quality can be guaranteed to be reasonably close to the optimal. The ap-
proximation ratio of an approximate algorithm A for a minimization problem is defined to
be Max{A(I)/opt(I)} where A(I) is the value of the solution produced by the approximate
algorithm A on the input sequence I, and opt(I) is the value of the optimal solution on the
input sequence I and the Max is taken over all inputs to the problems I of size n. The
approximation ration for a Maximization problem is defined as Max{opt(I)/A(I)} where
A(I) and opt(I) are defined as above. Note that the approximation ratio is always greater
than 1, and one is interested in an approximation algorithm with approximation ratio close
to 1.

Approximate Algorithms for Vertex Cover:
The vertex cover problem asks, for a given graph G, the minimum number of vertices needed
to cover all edges of G.

One greedy approach is to repeatedly pick a vertex to the vertex cover that covers the
maximum number of uncovered edges (once a vertex is picked to the vertex cover, all its
incident edges are covered). It can be shown that the approximate ratio of such an algorithm
is O(log n).

Consider the following simple approximate algorithm. Find a maximal (not maximum)
matching in the graph6. Let the matching have k edges and hence 2k vertices. Output the
set S of 2k end points of the edges in the matching as the vertex cover.

The fact that S forms a vertex cover is clear. For, an edge with both its end points
outside S can be added to the maximal matching contradicting the fact that the matching
is maximal. Hence every edge has at least one end point in S.

Computing the approximation ratio is usually difficult as one doesn’t know the optimal
value for the given input. We can get around it by using some bounds for the optimal
solution. Note, in this case, that k is a lower bound on the optimal value of the vertex
cover for the given graph. This is because, for each edge in the matching, at least one
end point must be in the vertex cover. Thus the approximation ratio of this algorithm is
A(G)/opt(G) ≤ 2k/k = 2.

Thus this is a 2-approximation algorithm. The startling fact is that no significant im-
provement on this approximation ratio is known and it is a challenging open problem to
design an approximate algorithm for Vertex Cover with approximation ratio better than 2.

6A maximal matching can be found in a graph by repeatedly picking an edge, and deleting all edges
incident on both its end points.

20



Approximate Algorithms for the Euclidean Traveling Salesperson Problem:
The traveling saleperson problem is essentially a variation of the Hamilton cycle problem on
weighted graphs. Given an undirected graph with non-negative weights on the edges (the
weight of an edge (a, b) is denoted by wt(a, b)), the problem is to find a Hamiltonian cycle
with minimum total weight. 7

It is known that it is NP-complete to find even a polynomial time, constant ratio approx-
imate algorithm for the general version of the problem. Here we will look at approximate
algorithm for the problem for the special case when the distances (the weights) on the edges
satisfy the triangle inequality (for every triple of vertices a, b, c, wt(a, b)+wt(b, c) ≥ wt(a, c).
This is also known as the Euclidean Traveling Salesperson Problem and its decision version
can also be shown to be NP-complete.

Consider the following approximate algorithm for the problem.

1. Find a minimum spanning tree T of the weighted graph.

2. Duplicate every edge of the spanning tree to get an Eulerian graph T ′. Compute the
Euler Tour E of T ′.

3. From the Euler Tour E, obtain a Hamiltonian tour H of G as follows: whenever a
sequence of edges (a, b1), (b1, b2), ...(bl−1, bl) is repeated in the Euler tour, simply remove
those edges and replace by the edge (a, bl) (the edge (a, bl) would not be present in the
Euler tour since the edges of the Euler tour are the tree edges and in a tree there is
only one path between a pair of vertices). Output the resulting Hamiltonian tour.

That the output produced is a hamiltonian tour of the graph is clear. Let W (F ) is
the total weight of a collection of edges in a subgraph F . W (T ) is the total weight of the
minimum spanning tree T , and W (E) = 2W (T ). Also W (H) ≤ W (E) due to the triangle
inequality (the new edges used have a total weight less than or equal to the total weight
of the edges removed from the Euler tour). Thus W (H) ≤ 2W (T ). Also W (T ) is a lower
bound for the optimal hamiltonian tour since if T ′ is an optimal hamiltonian tour of G, then
removing an edge from T ′ gives a spanning tree of G and so W (T ) ≤ W (T ′).

Thus the approximation ratio of the above algorithm is A(I)/opt(I) ≤ 2W (T )/W (T ) = 2.
That is the above algorithm is a 2-approximate algorithm.

Instead of duplicating every edge of the minimum spanning tree T to make it Eulerian, if
we add to T a perfect matching on its odd degree vertices and then obtain an Eulerian tour
and a hamiltonian tour as above, one can obtain a ratio 3/2-approximate algorithm. This
is the best known approximate algorithm for the Euclidean Traveling Salesperson problem
where the edge weights satisfy triangle inequality.

Exercise 5.1:
Given a graph G with p vertices, the following algorithm colours the vertices with positive
integers in such a way that for each edge in the graph, the endpoints are coloured differently:

Order the vertices of G in an arbitrary way. Colour the first vertex 1. For i = 2 to
p do: Pick the first uncoloured vertex v (this will be the i-th vertex in the order
chosen). Colour v with the smallest possible colour c such that no neighbour of
v is already coloured c.

7This is a popular NP-complete problem due to its practical application. It gets this name, because it
models the problem of finding a minimum distance tour for a traveling salesperson wanting to visit all cities
of a state exactly once.

21



Note that this algorithm may use different number of colours on the same graph, depend-
ing on the order chosen in the first step.

1. Given a complete bipartite graph K(n, n), how many colours will this algorithm use?
Justify.

2. Consider a graph G constructed from K(n, n) by removing a perfect matching (i.e. a
set of n edges in which no two edges share vertices). What is the maximum number of
colours the above algorithm will use to colour G? How should the vertices be ordered
in the first step for these many colours to be used?

5.1.2 Efficient Algorithms in Special Graphs

Typically when a problem is proved NP-complete, only the general version of the problem is
shown to be NP-complete (Actually there are several results showing problems NP-complete
even for special cases of the problem.). For some special classes of graphs, the special
structure of the class can be taken advantage to design polynomial time algorithms.

For example, the NP-completeness result of the hamiltonian path problem for undirected
graphs can be extended to general directed graphs also. However, for the special class of
directed graphs, tournaments, we have already seen polynomial time algorithms for finding
hamiltonian paths.

Problems known to be NP-complete are studied in special classes of graphs (Bipartite
graphs, Chordal graphs, Interval graphs, Perfect Graphs, Planar graphs to name a few
classes). This is a potential area of current research. For example, the Vertex Cover problem
has a polynomial time algorithm in Bipartite graphs. Similarly the clique problem is known
to be polynomial time solvable in bipartite graphs, chordal graphs, interval graphs etc.

5.1.3 Parameterized Complexity

This is a very recent direction of research to deal with parameterized versions of hard prob-
lems.

Consider the decision version of the Vertex Cover problem: Given a graph G on n vertices
and m edges and an integer k, is there a vertex cover of size at most k. Since the problem
is NP-complete we don’t expect an algorithm polynomial in n, m and k.

However there is an O(nkm) algorithm to solve this problem: Simply try all possible k
element subsets of the vertex set, for each such subset check whether it is a vertex cover. If
some such subset is a vertex cover, then the answer is YES and is NO otherwise. It is easy
to see that the algorithm answers the question correctly in O(nkm) time.

This algorithm becomes impractical even for k = 10 or so for a reasonably sized graph.
So the question addressed by this new area of Parameterized Complexity is to ask whether
there is an algorithm with running time O(f(k)p(n,m) where f(k) is an aribitrary (typically
an exponential) function of k, and p(n,m) is a polynomial function of n and m. In particular,
the parameter k is not an exponent of function of n or m. It turns out that it is easy to come
up with an O(2km) algorithm for Vertex Cover (and even this bound can be improved). The
idea is to pick an edge, say (a, b) and try including either of its end points in a proposed
vertex cover (one of them must be in ANY vertex cover). Once we pick a vertex a in the
vertex cover, we an delete that vertex and all edges incident on that vertex to get a new
graph. Recursively find whether the new graph has a vertex cover of size k − 1. If either
G− a or G− b has a vertex cover of size k − 1, then we say YES else say No. It is easy to
see that the algorithm takes O(2km) time and it produces a vertex cover of size k if there is

22



one in the graph. Such algorithms are very useful for a large value of the parameter k. In
practice, such values of the parameter seems to cover practical ranges of the input and so
such an approach attains practical importantance.

Classifying which of the parameterized problems have such an efficient (fixed parameter
tractable) algorithm is the main goal of this new area of research. See [4] for more details.

5.2 Summary

In this section, we had a glimpse of problems hard for algorithmic approach. Specifically we
had a brief introduction to NP-complete problems and a few approaches to cope with NP-
completeness. The approaches to deal with hard problems we saw are through approximate
algorithms and parameterized tractability. We also observed that there are several classes of
graphs in which some of the problems that are NP-complete in general graphs are polynomial
time solvable.

6 Conclusions

Through these sections, we had a brief introduction to algorithm design and analysis concepts
and some basic graph algorithms. We also looked at some recent advanced topics. Other
advanced topics in Algorithms include a study of randomized algorithms (where an algorithm
can make some careful random choices and one is interested in the expected runtime of the
algorithm, as opposed to the worst case) and parallel algorithms (where the algorithm can
make use of several available processors simultaneously).

The topics we have seen are by no means exclusive. Graph algorithms continue to be a
goldmine of problems and a hot area of current research due to its wide applicability and
interesting theoretical insights. Designing better algorithms or lower bounds form an open
problem even for some of the classical problems like Minimum Spanning Tree and Maximum
weighted Matching.

There are several good books on Graph Algorithms and we list a few below. The reader
is encouraged to look at them to get a more complete picture on some of the algorithms
discussed here, and also to find about other topics.

References

[1] A. V. Aho, J.E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley (1974).

(One of the classics and is popularly used as a text in courses. Though it is old and
some recent results are missing, some of the classical topics are dealt with thoroughly
here.)

[2] S. A. Cook, ‘The complexity of theorem-proving procedures”, Proceedings of the 3rd
ACM Symposium on Theory of Computing, New York (1971) 151-158.

[3] T. H. Cormen, C. L. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press,
McGraw-Hill (1990).

(A comprehensive book on Algorithms covering old and recent topics in detail. A good
book to have in the library. Recently there is a second edition with an additional author
‘Stein’ and the Indian edition is available for less than 300Rs.)

23



[4] R. D. Downey and M. R. Fellows, Parameterized Complexity, Springer Verlag, (1999).

[5] S. Even, Graph Algorithms, Computer Science Press (1979).

(A good reference for Graph Algorithms. One of the rare books having a good treatment
of Planarity. For example, it gives efficient algorithms to test whether a given graph is
planar or not.)

[6] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, Freeman and Company (1979).

(A fascinating book on NP-completeness and coping strategies. It has a comprehensive
list of NP-complete problems. As this is also an old book, some recent results are missing.
In paritcular, a problem listed as an open problem here is probably already solved.)

[7] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press (1980)

(A good book describing efficient algorithms for several hard problems in various sub-
classes of Perfect Graphs.)

[8] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science
Press (1978).

(A reasonable introductory book. There is an Indian edition.)

[9] R. M. Karp, ‘Reducibility among combinatorial problems”, in R. E. Miller and J. W.
Thatcher (eds.), Complexity of Computer Computations, Plenus Press, New York (1972)
85-103.

[10] D. E. Knuth, Sorting and Searching, Volume 3 of the Art of Computer Programming,
Addison-Wesley (1973).

(A classic and a thorough treatment of Sorting and Searching, the kind of problems
dealt with in the first section. There is a recent second edition available. Kunth also
has two other volumes in the series, one on Fundamental Algorithms and the other
on Seminumerical Algorithms. He is also planning on a Volume 4 on Combinatorial
Algorithms; that should be relevant to the topic of the present lectures.)

[11] K. Mehlhorn, ‘Data Strucutures and Algorithms, Volume 2: Graph Algorithms and NP-
Completeness’, EATCS monograph on Theoretical Compuer Science, Springer Verlag
(1984).

(There are two other volumes of this book: Volume 1 is about Sorting and Searching
and Volume 3 is about Computational Geometry.)

[12] C. H. Papadimitrious and K. Steiglitz, ‘Combinatorial Optimization, Algorithms and
Complexity’, Prentice-Hall (1982).

(Several graph problems like Shortest Paths, Network Flows, Matching have deep con-
nections with Linear Programming and Integer Programming. This book is a good intro-
ductory book for Linear Programming and Integer Programming and graph algorithms
that apply these techniques.)

[13] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Ap-
plied Mathematics (SIAM) (1983).

(A good book on heaps, binary search trees, minimum spanning trees, shortest paths
and network flows.)

24


