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(4)

Now, the probability that a single Z; is not properly coloured is given by ——* and hence,

[
2
= Prob{Z is PC N Z1Zy...7Z, are not PC}S(k 1 )P

There can be at most m pluckings at an V-gate, while there are O(m?) pluckings for a A-gate.
Hence, the number of errors that could be caused by a single gate for the negative test cases

( l )
2
is bounded by m? - (= =%)? - (k — 1)". The bound on the total number of negative test case

errors is 1 - (k — 1)". The number of gates is bounded by,

)‘TL 2p—1

# gates >l (k-1
R E E P R

Combining the two bounds for the number of gates that we have found, we have

n
k 9p=1
2 n—1-1 " m?
m E—1-1

Choosing the following set of values for our parameters,

# gates > min

n

= Vk] 5 k=( )7 5 p=[Vk-logn] +1

8log’n

we get a lower bound of 2%VE) | The basic idea employed in the analysis above is summarized
in the table below of test case type versus gate type,

positive test cases | negative test cases

OR gate Nno errors errors due to plucking

AND gate | errors due to erasures | errors due to plucking
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We have bounded the number of errors that could be made by the circuit. We are now interested
in finding the number of gates in the circuit. We shall consider the positive and negative test
cases separately and find out which gates contribute to its errors.

Consider the positive test cases and let us bound the number of errors that could be committed
for these by the vV and A gates.

e OR: This cannot make mistakes on the positive test cases. Mistakes are made by an
V-gate if it outputs a 0 when one of its children gave a 1. Intuitively, plucking retains the
core of the clique indicators that it discarded. Hence, it has reduced the size of the clique
indicators that were discarded, i.e. if the discarded clique indicators were 1, the core will
also be 1.

e AND: Unioning by itself is not a problem, and neither is plucking, as we saw. Frasing
clique indicators is problematic since, the act of removal of a union of clique indicators,
might cause some clique not to be considered at all. Such positive test cases occur when at
least (I + 1) vertices of a clique of size k are fixed. And, since at most m? clique indicators

could be erased at an A-gate, we get a total of m? - ( Z:;: 1 )

Knowing the number of errors the circuit makes on the positive test cases, and the fact that
these are all contributed by A-gates, gives us a bound on the number of A-gates.

n
k
2 n—1—1
m <k—l—1)

Now, consider the negative test cases, and let us look at its sources of errors. An V-gate gives a
0 only when all of its inputs are 0s. Since plucking reduces the size of clique indicators, some of
these and hence, their collections might be fired when they should not. This situation can be
abstracted as follows. 7y, Zs,..., Z, are the petals such that V;»; 7, N Z; = Z and each Z; = 0
but Z = 1. In the context of colouring, this can be stated as, 7 gets a proper colouring (PC)
(i.e. each vertex of 7 is a different colour) while none of the Z; are properly coloured. Using
the fact that Prob{A A B} < Prob{B|A} we get,

= Number of N gates >

Prob{Z is PC N 7Z17Z,...7, are not PC} < Prob{Z1Z,...7Z, are not PC|Z is PC'}

From the fact that if Z is properly coloured, the probability that Z; is not is less than if Z;
were to be not properly coloured independently of Z.

< HProb{ZZ- is not PC|Z is PC} < HProb{ZZ- is not PC'}
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AN Ding 2 collections could result in a collection of size as high as m?. Fig 11.3 shows the A
operation on 2 collections. To get the collection size back on the rails, we need

o Union: The A of 2 clique indicators is merely their union, i.e. [A;] A [B;] = [A4; U B;].
The size of the union could exceed /. Solution is to erase all such unions.

e Plucking: At this stage all the clique indicators are < I. One now performs plucking to
ensure that the size of the collection is < m.

Razborov found the C'LIQU F problem too general for his liking. He focused his attention on
two classes of C LIQU F instances, called positive and negative test cases. The positive test

cases are those instances that have a complete graph on k vertices. There are of these,

n
k
and they are the minimal class of positive instances of CLIQU F, i.e. removal of a single edge
makes the instance a negative one.

The negative test cases are (k — 1)-partite graphs. These are CLIQU E instances that result
from colouring n vertices with (k£ — 1) colours and connecting any 2 vertices with different
colours. That is, (k — 1)” cases in this class.

We are interested in the number of errors that the circuit could commit. At the output gate,
two cases arise. An empty list could be associated with the output gate. On all the positive
cases, the output gate gives a 0 and makes a mistake. On the negative cases, the behaviour is
perfect. In the second case, the output gate has at least one cligue indicator in its collection.
The question now is, how many errors (i.e. firing when it should not) can be accrued on the
negative test cases.

Consider [X] < [. The vertices in the clique indicator could come from [ of the (k—1) partitions,
k-1
l

of the negative test cases for which [X] makes a mistake is

(kll)-lwk—u%f
(k—1)! (k=1)(k=2) ... (k—1)

and the gate fires. The number of such cases is !+ (k—1)""!. That is, the fraction

(k—1)n (k=11 (E=-1) (k— 1)t
k-1 k-2 k—1 1 2 -1
s Ry S T s LA s D

Taking logs, we have
-1 -1 1(1=1)
EZJZI log (1-747) —e 2j=1 = — e 2(k-1)

Taking | = |y/n], the fraction of the negative test cases on which a single clique indicator makes
an error is > %
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indicator is defined as,

rX] =1, if on the set X there is a clique.
=0, otherwise.

If any one clique indicator in a collection of them is ON, then the whole collection is considered
to be ON. That is, the collection behaves like an \/.

The parameters for CLIQU F are,

k  size of the clique being searched.
[ bound on the size of each clique indicator.
m  bound on the size of each collection of clique indicators.

We need to address the issue of merging clique indicators at the circuit gates based on the
gate type. Consider the \/-gate. Its operands (2 in number w.l.o.g) are collections of clique
indicators. This corresponds naturally to the |J of the 2 collections as indicated in Fig 11.3.

[

[Adl - [Agl[By] - [Bpyl
[Arl - [Agl[By] - [Byl

\ TN \ \ \
[Ar]l - [AGI[B] - Byl [A1] [B11[A1] [B] [Aml Bl

Figure 11.3: Merging of clique indicators

O Ring of 2 collections could result in the collection size, m’, growing upto 2m. But, we want
m’ < m. A technique called plucking is used and involves the following steps.

Repeat until m’ < m.
Choose a p such that m’' > (p —1)! - [.
Find a sunflower.
Pluck the petals off.
Retain the core. Number of sets is reduced by > (p — 1).
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$1,53, ..., 5, such that each is disjoint. At some point one will not be able to pick any more
sets. Two cases arise. The first case is when m > p. There is nothing to be done here. The
core set is 5 = ¢.

The other case is when m < p. Consider the set 7 = |2, S;. 7 by construction intersects
with every set in F and, |Z| < m -1 < (p—1)-1. Each element of Z is contained on the

1. .
% > % sets of F. Hence, there must be some element z € Z that intersects

> (p— 1" (I = 1)! sets in F. Take the collection of sets that contain z and suppress =
in each of these sets. The cardinality of each set is now bounded by (/ — 1) and there are
k> (p—1)=".(I—1)! sets. That is, the induction hypothesis is satisfied. Hence, there exist p
petals but of size at most (I — 1). Throw 2 back into these p petals. B

average in

The Sunflower Lemma indicates that in any large collection of sets from some universe, which
seems like chaos, there is order in it. It is not known whether the second condition in the
Sunflower Lemma can be improved. That is, when exactly do we start seeing sunflowers.

11.2 CLIQUE

The CLIQU E problem can be stated as, given a graph G = (V, F), is there a clique of size k.
Note that, CLIQU F is a monotone property. That is, adding edges to a graph increases the
chances of finding a clique, but never reduces it. A naive way to look for a clique of size k in

G would be to look at all [ " | sets of vertices and check if any one of them is a clique. Once

k

k> n%, the number of sets to be checked is no longer a polynomial.

T T T |
X11X12 Xin - Xjj Xpn = Aaﬂr?@

Figure 11.2: A circuit that computes CLIQUF
Let us now discuss Razborov’s proof for an exponential sized lower bound for monotone circuits

computing CLIQU F. Fig 11.2 shows a general circuit that computes C LIQU F. With every
gate in the circuit we associate a bunch of clique indicators, written as {[X;]}™,. A clique
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Razborov ([15]) was the first to show an exponential lower bound for monotone circuits.
This set of lectures shall focus on Razborov’s result that C' LIQU F requires an exponential-sized
monotone circuit.

Recall that a monotone circuit is one that does not contain any negations.

11.1 Sunflower Lemma

Razborov used the Sunflower Lemma in his exponential lower bound proof for CLIQU F.
This lemma discovered by Erdos & Rado seems to find order in chaos. Fig 11.1 illustrates a
sunflower.

coreS

Figure 11.1: A sunflower with a common core S and p petals.

Lemma 5 Let F = {51,52,...,5k} be a set system over some universe such that

(1) |9 <1
(2) k> (p—1)-1

Then, 3 a sunflower with p petals. That is, 3F C F, where F' = {5;,,5;,,...,5; }, such that
for any two sets A,Be ', AnNB=25.

Proof: We shall use induction on [ to prove the lemma.

Base Case: | = 1. = k > (p—1)ie. k > p. The core, S, is the null set ¢ and we have p
disjoint sets as the petals.

Inductive Step: Assume the result is true for (I — 1). Order the original set system. Pick sets
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The fraction of errors at the M AJ-gate would be < s - i = i. This implies that there exists
a voting polynomial of degree O((log s)??) which approximates PARITY with % errors. But,
we already saw that any approximate polynomial for PARITY has Qy/n degree. This implies,

1
L id
2

= (logs)* >n = logs>nid = s>2"

That is, even with M AJ on top, we cannot compute PARI'TY in constant-depth polynomial-
sized circuits.
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Case 3 occurs with probability < n - 2% = % Case 2 has the following 2 situations:

P’I‘Ob{pH.] = 1|p7: > 2} < ( ]12 ' % ' 2?1‘1—1 = é%'

Prob{pis+1 = 0[p; > 2} < 55

These 2 can be combined to give,

pi
' Pi 2
Prob{piy1 = 1|p; > 2} < 22— = > =~
Cases 1 and 3 occur with probability > % and hence, the probability that some p; = 1 is

1 2 1
23x5323 W

The claim would imply that if one were to write the polynomial P(z) as,

k
P(zy,29,...,2,) =1— H(l — i)
=0
then the following cases arise.
e Case 1: 1 =29 =...=1z, = 0. This implies P(...) = 0.

e Case 2: dj - 2; = 1. I'rom the above claim, with probability > 15, there 37 - p; = 1. This
implies that P(...) =1 —0 =1 with probability > %

This is an approximation of \/(z1,z2,...,2,). The degree of P(...)is O(logn). Now, if one
wants to reduce the error to be < ¢, then one can make O(log ]E) copies and then take their
products. What we would get is,

2 1 1
- II [Ja-») = < (Z)elos
( Pi) 67"1‘07‘_(3)

all copies 1

By choosing an appropriate ¢ one would get the error to be < e. The degree has now become

O(log L -log n).

Now suppose, a circuit of depth d and size s is given to us. Let us chose ¢ = ﬁ. Taking
the size of the circuit as bound on the number of inputs to the output gate, the polynomial
corresponding to the output gate would have a degree < O((log s -log s)?) = O((log s)??). The

total error for the circuit would be < size of circuit * error at each gate < é.

Let us now consider the circuit shown in Fig 10.3. Note that s is the size of the complete circuit.
Hence, the size of each of the AC® components can be at most s and & < s. MAJORITY over
the reals is defined in the following way.

=1, if (Zf:] pi — %) >0

=0, otherwise

AJAJ(plap% s 7pk) {
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degree of p(z)-q(z)is k+ d(f) — k —1,1i.e. dy(f)— 1. That is, one has a representation that
has a smaller degree than d,(f)! H

We already saw that for PARITY , d,(PARITY ) > n. This implies that

de!f2]_k_1j
|error set for PARITY | > E ( " )

5 ?
=0

In other words, lower the degree of the polynomial, higher the number of errors. If one wants

the number of errors to be < 2= then the degree has to be Q(y/n). This comes from the error

distribution shown in Fig 10.5.

nY/2 n/2 nY/2

Figure 10.5: Frror distribution for PARITY

10.4 Approximating PARITY

First let us consider the approximation for \/(z1,z2,...,2,). Initially, the input set is Sy =
{z1,22,...,2,} and define py = 3 g #i. Now, toss a coin to determine whether to keep a
particular element of Sy or not. One would get the set 51 = {z;,,2;,,...,2;, } and p; = Y ores, T-
Repeat this experiment k£ = logn + 1 times and collect the $;s and compute the p;s. That is,
we would have a sequence of sets Sg, 51,...,5% and a sequence of numbers pg, p1, ..., pr.

Claim 2 There 15 with probability > % such that p; = 1 provided 3~ z; > 0.

Proof of Claim: Let us consider the sequence Sg — 57 — ... — 5. There are 3 cases
that arise.

Case 1: pg=1.
Case 2: di such that p;_1 > 2Ap; < 1.
Case 3: pp > 2.
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Proof: Let p(z) be a polynomial of degree k. The number of terms that p(z) could have is
= ( Z ) + ( i ﬁ 1 ) - ( g ) This is also equal to the number of coefficients in p(z).

The value of p(z) on any input is a linear combination of these coefficients. Therefore, p(z) = 0

. . . n .
on all z € S is a homogeneous system of | S| linear equations on Zf:o .| variables, as
i

indicated in Fig 10.4.

| S| : coeffs| =

Figure 10.4: A homogeneous system of || linear equations.

We know from Linear Algebra that there exists a non-trivial solution since | S| < S35, ( 7; )

So, there exists a p(z) which is 0 on all z € 5. Setting ¢(z) = (p(z))?, we can ensure that
g(z)>0onall z. B

The main result of the paper ([2]) is the following theorem.
Theorem 7 Let p(z) be a polynomial of degree k and f(z) be some function. If k < d,(f),
then any polynomial p(x) that approximates f(x) must be in error on

de(f)2—k—1J

errors > Z ( 7; )

1=0

Proof: We shall prove this by contradiction. Suppose not. That is,

duw(f)—k—
| Julf)kt

lerror set| < Z ( 7; )

=0

From the previous lemma, 3 a polynomial ¢(z) of degree d,,(f) — k — 1 such that ¢(z) > 0 and
q(z) vanishes on the error set. Therefore, p(z)-q(z) weakly represents f(z) because p(z)-q(z) =
0 Vz € error set and since ¢(z) > 0 Yz, sgn(p(z)) = sgn(f(z)) Yz ¢ error set. Now, the
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Consider the situation when the number of 0s is exactly one more than the number of 1s. As
per the strategy, the majority of the voters will cast a vote of 0. If n is odd, then the voters
will be all wrong. And, if n is even, then the voters are correct.

In the symmetric case when the number of 1s is exactly one more than the number of Os, the
majority of the voters will again vote 0. If n is odd, then the voters are correct. And, if n is
even, then they are wrong. Therefore, depending on whether n is odd or even, the voters are

. . . . L 2 1 .
wrong in one of the above 2 situations. Either of the above 2 cases arise in ( n: ) of 22n+1

cases. That is, the voters are wrong with probability ﬁ.

There are two other variants of the above Voting Puzzle. In the Chicago style voting variant,
each voter is allowed to cast as many votes as he/she wants. In the other variant, the number

of votersis | | and each voter looking at just k& of the n bits has to vote Chicago style on

k
the PARITY of the n bits. ([2])

10.3.2 Voting Polynomials

A polynomial p(z) approzimates a function f(z) with error € if Prob, {sgn(p(z)) = f(z)} >
1 —e. A polynomial w(z), where w # 0, weakly represents the function f(z) if w(z) # 0 =
sgn(w(z)) = f(z). Define d,,(f) to be the degree of the smallest degree polynomial that weakly
represents f.

Claim 1 d,,(PARITY) = n.

Proof of Claim: We shall prove this by contradiction. Suppose p(z) weakly represents

PARITY and the degree of p(z) is < (n — 1). Consider, Z p(z) - PARITY (z) > 0.
ze{£1}n

This is true from the definition of p(z) and the fact that p(z) # 0. The LHS can be rewritten

as,
g ('23“213“227“”1_[3%: E ci-mi;-xié-...-mﬁlzo
T 7

The last identity is true because for each term in the summation, there are 2/'~1 settings that
give a —1 and an equal number will give 1. Hence, we have arrived at a contradiction. B

k
Lemma 4 Suppose S C {£1}" and |S| < Z ( 7; ) Then, 3 a polynomial q(z) of degree 2k
7=0
and q(z) > 0 and g(z) # 0, such that q(z) vanishes on §. That is, ¢(z) = 0 whenever z € 5.
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10.3 Voting Polynomials

Smolensky ([19]) showed that the approximation of V by a y/n-degree polynomial over the field
Z3 is going to differ from PARITY on many points. Tarui ([21]) showed the approximation of
V over the reals. Aspens et al ([2]) used Tarui’s result to show that PARITY cannot be realized
by a circuit of the form shown in Fig 10.3. They used a technique called Voting Polynomials.
This shall be subject of discussion for the rest of the lecture.

Figure 10.3: Circuits that cannot realize PARITY .

10.3.1 Voting Puzzle

Let us consider the following voting puzzle. There are an odd number of people (2n+ 1) sitting
in a round table. Each has a bit on his/her forehead. So, each can see the bit on the foreheads
of all the others except his/her own’s. Each person casts a private vote on the PARITY of the
bits on the foreheads of all the people. The voters are not allowed to consult or communicate
with each other. The majority vote is considered as the collective vote on the PARI'TY. What
should be each person’s voting strategy? Note that, every person has to be wrong at least %
the number of times (Do you see why?).

It is tempting to conclude that the voters can collectively be correct only half the time. The
following strategy surprisingly gives the voters a very high probability of being correct. ([2])

A person seeing an equal number of 0’s and 1’s, casts a vote of 0. Else, the person
assumes that the bit on his/her forehead is the same as the majority bit on the
foreheads of others; and then casts a vote accordingly.

Let us analyze this voting strategy. When the number of 0s and 1s differ by more than one, each
person casts a vote based on the assumption that the bit on his/her forehead is the majority
of the bits that he/she sees. Hence, the majority of the voters will be correct in assuming that
the bit on their foreheads is indeed the same as bit that is in the majority. This voters would
be correct about the PARITY of the bits on their foreheads.
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10.2.1 Errors bound for PARITY

In order to show the lower bound for errors made by any \/n-degree polynomial for PARITY ,
we shall move over to the {1, —1} domain ([7]). We shall use a one-to-one onto invertible map
{0,1} — {1, —1}. The mapping is z; — (1 — 2z;) = y;. There exists a function

n

PARITY (y1,y2,---,9a) = [ 4

=1

that computes PARITY exactly. z; can be recovered from y; using z; = 1_2%'. Now since we

are working in Zs, the multiplicative inverse of 2 is 2 itself. Hence, z; can be recovered using
r;=2-(1—y)in Zs.

Let f(z1,22,...,2,) be our y/n-degree approximate polynomial for PARITY . Define A as the
set of input points where the functions PARITY (...) and f(...) agree, i.e. A ={z1z2...2, :
PARITY (z1,29,...,2,) = f(z1,22,...,2,)}. We shall look at this set A of agreements and
estimate its size through the use of Fy4, the collection of mappings g : A — {0,1,2}. |F4| =
3141 and therefore if we can show that |F4| is small, i.e. |F4| < 3¢, then |A| < ¢, i.e. the
number of points on which PARITY and the \/n-degree approximator f disagree is > 2" — g.

The technique that we shall follow for showing |F4| is small is to take a ¢ € F4 and assign

it to a different polynomial of degree at most 5 + 4 We then estimate the number of such
polynomials.

Look at a polynomial in Z3. Fach term in the polynomial will be of the form ¢-z;, -z;,-. . .-2;, with
¢ € {1,—1}. That is, it will be a multilinear monomial since each z; € {1,—1} = z;2 = 1 and
any z;* can be replaced by z;. Hence, our polynomial will consist of monomials m1,ms, ..., m.
Let us consider a monomial m. If its degree is > & + \/TE, then m = 41 - yo - ... yp with
k>% 4+ 4 Let us multiply m by (ypq1 +--.-yn)> =1,
yioyz e (W ¥ =y Y (YY)
For the input points in A, we can rewrite this as,
= PARITY (y1, 92, -, Yn) * (Yot + -+ Yn) = f(21, 22,0, T0) ¥ (Ybtt -2 Yn)

Note that this substitution holds for the input points in A alone. Hence, we have managed to
show that the degree of our large degree monomial m will now be convertible to one of degree

<Vn+§-— 4 <+n+ 4 That is, any monomial can be converted into one with less than

this degree as long as one is within A. Therefore, the number of monomials of degree < 7 + 5@
ny
: + n 49
is Y 2472 . < x5 2%
20 ( i ) 50

Therefore, the number of different polynomials consisting of monomials of degree < 2 + 5@ is

< 352", Hence, |A| < % - 2™, That is, the number of input points on which any /n-degree
polynomial approximating PARITY(...) makes an error is > 2" — % SVAES ,)1—0 - 2™,
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the experiment [ times, and then do the proper V (i.e. using the arithmetization stated in
Fig 10.1), then the probability of being wrong on an V is < % That is, the number of points
on which one is likely to be wrong is < 277!, The degree of the polynomial that results is
(p—1)-L

One needs to note a subtlety on the base of errors. Consider an internal gate as shown in
Fig 10.2. The gate seems to have 2* settings based on the values that its inputs g1, ¢s,..., gk

can take. Fach of these inputs eventually get their settings from the inputs z1,2,...,2,.
Therefore, for every gate there are 2" possible settings and the errors come from these.

Figure 10.2: An internal gate in the circuit.

Let us now look at the total number of errors that an AC? circuit C of size s and depth d can
commit. The —-gate does not commit any errors while the V-gate makes errors.

errors(C) < s-2"7' and degree(C) < ((p—1)-1)*

Note that, our objective being a low-degree polynomial approximating C', we need to select p
and [ appropriately. Setting,

1

p=3 =degree(C)<(2D)! = (2)'=n él:§-n21_d
This would imply that the errors committed by C' is < f21 That is, if we can now show
an2d

22
that any y/n-degree polynomial on Zj differs from PARITY on > ,)1—0 - 2™ points, then we can

conclude that on 1 1 1
S > n s> .95
gin2a — 50 50

This would then allow us to legitimately conclude that PARITY ¢ AC°[mod(p)] and, specif-
ically that PARITY ¢ AC°[mod(3)]. In the next subsection, we shall give an outline of the
errors lower bound for PARITY in the context of Razborov’s method of approximations.
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919, 9y
K
X; —= 1- x; |\ il:log'
919, 9y

Figure 10.1: Arithmetization of a Boolean Circuit

The claim is that any y/n-degree polynomial cannot represent PARITY on a large fraction of
the points. In the rest of this section, we shall prove this claim.

Let us look at the effect of each gate on the degree of the polynomial that results. Assume that
the degree of an A-gate is k and its inputs are ¢q,¢2,...,9x. An A-gate, as shown in Fig 10.1,
would give a degree of < k- mazy(degree(g;)). This means that at each level the degree of the
polynomial grows by some factor (the maximum fan-in of a gate in that level). And, since one
is dealing with AC? circuits, the degree can be at most polynomial.

Let us now consider the approximation of an V-gate. One is now working over a field Z, and
recollect Fermat’s Little Theorem, a?~' = 1mod(p). The inputs to the V-gate are z1, 2, ..., z,.
Define,

n p—1
f(m17$27--'7xn):(ZTi'xi> T’iEZp
i=1

r; is a random element from Z, and plays the role of selecting the input. The behaviour of f
can be understood by considering the following 2 cases.

e Casei: 21 =2y =...=2, = 0= f(21,22,...,2,) = 0. f behaves exactly as an V on
this input point.

o Case ii: There is at least one 1 in the input. That is, 35 -2z; = 1. f can be rewritten as,

n p=l
flzr,2e, ... z,) = (Tj'wj-l- Z Tzwz) :(Tj‘|"])p_1

i=1,i%j

The V-gate on these inputs outputs a 1 and we would also like f to behave in the same
manner. This will happen in most cases except when r; = —g(mod(p)). And, this happens
with probability ;—) < %

The above approximation of an V-gate generates a fixed degree polynomial since p is fixed.
Given an input to f, it is likely to make an error with a probability < % If one were to repeat
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We shall continue in our PARITY ¢ ACY vein. Here we shall discuss Razborov’s Method of
Approzimations ([15]) and Voting Polynomials by Aspens, Beigel, Furst & Rudich ([2]).

10.1 Introduction

Razborov introduced his method of approzimations ([15], [16]) in the context of monotone
Boolean functions. The starting point for this work is a theorem by Shannon. It says that
any random Boolean function requires a circuit of size > % This was an existence result. No
actual function was known for a long time that required > 2~ gates. Razborov ([15],[16]) was
the first to demonstrate that a monotone circuit for C LIQU E requires at least 2%(V™) gates.
Razborov extended this bound to an AC" realization for CLIQUE.

The basic idea in the method of approzimations, as the name suggests, is to approximate each
gate. That is, instead of representing a gate by an exact polynomial, one allows for some error
to be introduced by each gate. One does this approximation with the intention of arriving at
a small degree polynomial that represents the function computed by the circuit. By a small
degree polynomial, one means a polynomial with a degree of the order of \/n. Therefore, if the
approximations are good and effective, then the polynomial that results for a circuit will have
a small degree.

Let us now come to the question of how the method of approrimations can be used to prove
lower bounds. Assuming that each gate introduces an error e, a circuit C' would have a total
error that is bounded by size(C') - e. Therefore, knowing e if one can show that a circuit has a
large error, then the size of the circuit has to be large.

The approach used for proving that PARITY ¢ ACY is to show that a small degree polynomial
for PARITY has > ,)1—0 2" errors. This would imply that any circuit realization for PARITY
has to be exponential-sized.

10.2 Method of Approximations

Given a Boolean Circuit C', one arithmetizes it in the standard way as shown in Fig 10.1. Note
that, the V-gate’s arithmetization can be got via De Morgan’s Law, i.e. = of the A-gate. This
scheme of arithmetization leads to a representation of an ACY circuit as a low-degree polynomial
(i.e. y/n-degree) over an appropriate field ([15], [19]).
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Hastad’s ([11]) bound of 2°("*) is the best known bound for PARITY. Yao ([22]) showed a

a1 a
bound of 20"*) ' while Razborov ([16]) had the bound 2°("?%). The constant that is present
in the exponent of the size for a depth-3 realization of PARI'T'Y is known exactly. This is not
known for a depth-4 realization.

Exercise: Show that a depth £ circuit, where k& = O(lololg" ), the size of the circuit {
glogn
k1
9(75) F=T =T } becomes a polynomial. Also, show a polynomial-sized realization of depth
g for PARITY .
glogn

Before we wind up, we shall show that PARITY ¢ AC° = MAJ ¢ AC®. Now, a function
f(z1,22,...,2,) is a symmetric function if the value of the function depends only on the number
of 1s in the input, i.e. f depends on >, z;. This means that f can be represented as a value
vector of size (n + 1), i.e. (vg,v1,...,v,). The value vector can be represented as a step

function as shown in Fig 9.9.

t t t3 14 XXz - - Xn

Figure 9.9: Representing a symmetric function as a step function.

If an input falls in the one region then (k + 1) of the gates shown in the right of Fig 9.9 will
fire. While, if the input falls in the zero region then only & will fire. Therefore, doing a simple
majority on the gates will give us our required realization. The depth of the circuit is 2.

A symmetric function having k one regions can be realized through a T'CY circuit of size (2k+1).
The worst case occurs when k = 3, i.e. for PARITY . This shows that a threshold circuit of
size at most (n + 1) realizes PARITY .

Now, if MAJ € AC® then it would imply that PARITY € ACP. Therefore, MAJ ¢ ACP.
One can show a lot of other problems as not being in ACY. For instance, CLIQUE is an
important problem that we shall show later on as not having a monotone realization.The
proof technique that has been employed to show that PARITY ¢ ACY basically revolves
around showing that some bottom-level gate necessarily has to have a large fan-in. If one can
show the same for some other problem, then the PARITY ¢ AC® proof can be cannibalized.
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That is, the number of sub-circuits at the (k — 1) level is at most 2°. This implies that the
probability of a restriction being bad for some sub-circuit is < 2° - (%)9 < 1. That is, there will
be a restriction that works for all the sub-circuits.

Now, the number of variables that are unset in a good restriction is [, given by

kE—2

l:p.n:nk—l

1 1 k=2 1 1 1
= r=—8=—.nk1 = — .pk1"%2 = — .[k=2
10 10 10
The number of variables that continue on in the reduced depth-(k-1) circuit is [, the bottom
level fan-ins, r, is proper, and so is the size of the circuit upto the (k — 3)" level. That is,
everything is set for the induction to go through. But, the induction hypothesis assumes that
no depth-(k-1) circuit of the above kind can compute PARITY. Hence, no constant depth
circuit with large enough bottom fan-in can compute PARITY . One needs to show this for any

AC? circuit.

k 1

Theorem 6 No depth-k circuit of size < () T ET o compute PARITY .

Proof: We shall reduce to the previous setting.

Figure 9.8: Augmented circuit of depth (k4 1).

1

Consider the augmented circuit in Fig 9.8. The depth has increased to (k +1). Set p = 55,

T =

k 1
1,5 = (55)¥ 7 - n*¥1. The number of sub-circuits is at most 2° and the fraction of restrictions
that are bad is < (5)°. That is, the total number of bad restrictions for the circuit in Fig 9.8 is
< 2% (%)S < 1. This implies there exists a restriction p that can be applied to the circuit with

the following parameters.
1 & 1 n

= (—)F=T .pF=T: = —

s= ()T nE 10
_<1>% 10 = Lk

is_ E .( .) _E.

A single random restriction has brought us to the previous setting where the bottom level fan-in

is s = 3 .17 and the size of the circuit upto the (k — 2)" layer is at most 2°. This we know
cannot compute PARITY . R
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o There is a restriction on the size of the circuit in the first (£ — 2) layers. The size should

be < 216

1
nE=1

1
o The bottom level gate fan-ins is to be at most r = 11—0 snk-T,

1
size of circuit 1kl A
210

at most

2

. 1 k-1
r isat most 10n

Figure 9.7: Circuits that cannot compute PARITY .

We shall use induction on the depth of the circuit to prove that PARITY cannot be computed
by circuits of the above kind. The base case, when £ = 2, would imply that r = {5, i.e. the
bottom level gates can have a fan-in of at most 5. Such circuits cannot compute PARITY
since we already know that any depth-2 circuit for PARITY necessarily has to have a bottom

level fan-in of n.

Moving on to the inductive hypothesis, assume that circuits of the above kind having depth
(k — 1) cannot compute PARITY . The approach followed for the inductive step is

1. Take a depth-k circuit conforming to the circuit constraints and hit it with a random
restriction. The Switching Lemma assures us that with high probability one would be
able to switch the bottom 2 layers. This would allow one to merge the (k — 2)" and the
(k — 1) layers and hence reduce the depth of the circuit to (£ — 1).

2. One needs to then show that the reduced circuit that results satisfies all the initial con-
ditions to permit the application of the lemma for the depth-(k-1) circuit.

1
nE—1

1
7o and p = n~ k-1, The Switching Lemma tells us that the fraction of bad
restrictionsis < (5-p-r)* = (3)°. The size of the circuit upto the (k — 2)"" level is at most 2.

Let us set s =
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These Os constitute the set D. Let us estimate the size of D. If ¢ variables are set in (31, then
the rest of the s together can set s — 7 variables to 1/ — 1. That is the following recurrence
relation gives us the an estimate of | D,

min(r,s)
|D| = |Beta(s)| = ( Z: ( : ) - |Beta(s — z)|) .28

Beame ([4]) shows that the above recurrence is upper bounded by (5)° - 2°. This leads us to
the following bound on |$].

<R oI < " .2”—l+s.<L>s.28
|5|_|Rn|||_<l_5) ™

T n—l+s)-(I=s) T n—l+s)(n—I+s—1)-...(n—I+1) \n2

<(ma) () = (omme)
|IRL| — \n—1 n2) —\(n—=1)-In2

|S| << 4-p-r )5
] < \{T—p) 2

It is known that for p < 1, H%l_l <(7-p-r)°. ([4)

(n—1)-11.28 <2_7‘> Io(I=1)...-(I—s+1) <47‘>5
S

Setting p = %, we have

One has proved the Switching Lemma which says that given a DNF formula F’, where each
term is of size at most r, then one cannot convert it into a CNF formula F’, having clauses
of size at most s, via a random restriction with probability < (7-p-r)°, where p = % is the
probability of a variable being unset in the restriction. A tighter analysis would show that the
fraction of bad restrictionsin R! is < (5-p-r)°.

9.4 Switching Lemma on PARITY

Recall that any depth-2 circuit computing PARITY has gates in the bottom level that all
have a fan-in of n. Using this observation and the Switching Lemma, we shall venture to show
PARITY ¢ AC°. In fact, we shall show that a constant depth circuit with the following
constraints cannot compute PARITY . Fig 9.7 illustrates these constraints.

e The number of gates in the bottom 2 layers does not matter.
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F1,=t1VtaV...V1;. Now, for each levelin the decision tree for /' |,, one has a segment 7; of
7. Each 7; fails to satisfy the term ;. Thatis, 7 = 7y -m3-... 7. And, corresponding to each 7,
one has a path (partial assignment) o; that satisfies #;. Fig 9.6 illustrates this correspondence.

Figure 9.6: I’ |, split into £ levels.

F'1p.x,, the formula that results when /' is restricted to p- 7, would cause some term to vanish.
F 1,.» would give a decision tree of depth at most (I —s). That is, p -7 would give a restriction

from RI=*. The one-to-one correspondence that one is looking for is § = R'=* x D. D has
yet to be defined.

Essentially, the one-to-one correspondence should be such that, given a p € 5, one should find
a unique element from R'=® x D. That is, p restricts F to the formula F 1p- The partial
assignments o1, 03, . .., 0L each satisfy a term resulting from the successive application of the
partial assignments my,To,...,Tp. One has available in hand F and p, and hence, the g;s.
Therefore, in order to go to «, if one can maintain information about how each o; differs from
7;, it would be possible to uniquely identify 7. And, hence a unique tuple from R!=* x D can
be associated with p..

Towards showing the one-to-one correspondence, one shall define 3; € {0,1, —1}" for each term
in /' with the following interpretation

0, 5" var of it term is not active.
Bi; = 1, 4" var takes same value as in =;. Vie[l,r]
—1, ™ var takes dif ferent value from that in ;.
The total number of 1s and —1s in all of the ;s put together is s, since all the 7;s put together
set s variables. Once a variable is set to 1/ — 1 1in f;, it will not get set in subsequent f3;,5 > i.
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A sample canonical decision tree is shown in Fig 9.4. Note that, on any path in the canonical
decision tree, the variables will appear in the same order.

Consider a path, 1 — y2 — ... — 7, in the decision tree terminating in a 0. That is,
Y1 Y2+ ...y = 0, which implies ¢3 Vo V...V g = 1. This is a clause in CNF. Therefore,
looking at all paths that terminate at 0, one can get a CNF formula for the decision tree. But,
the problem is with the depth of the decision tree (i.e. size of each clause). One wants the size
of each clause to be < s. And, one has already seen a method for simplifying formulas.

Suppose, one hits the decision tree for F with a random restriction in which /n variables
survive. One gets a new formula F’ with fewer variables and, whose depth (i.e. decision tree
depth) is at most s. This would pave the way for the switch to a CNF formula. Note that, the
formula F’ is not the original one but a restricted one. Therefore, one has to assert that by
hitting with a random restriction, one does indeed get a decision tree for F' with depth < s.

Let us look at restrictions on n variables with / unset and the remaining (i.e. (n — /) variables)
n
l
denote the set of all bad restrictions (i.e. random restrictions which result in a decision tree of
height > s). The Switching Lemma avers that

5]
@S(T

set to 0/1. Let R! denote the set of all such random restrictions. |R| = 27l Let §

- . s
n T)

9.3.2 Proving the Switching Lemma

Figure 9.5: Effect of a bad restriction.

One needs to be able to count the number of bad restrictionsi.e. bound |S|. Consider a p € 5.
p would have forced the decision tree to be of depth > s as shown in Fig 9.5. It is difficult to
extract a property of p that could cause this and therefore, counting 5 seems rather difficult
through straightforward means. Hence, the basic idea of the proof is to define a one-to-one
map from S to some other set D such that |S| < |D|. Now, D is a nice set in the sense that
one can count it.

Let us consider a bad path 7, i.e. a path of length > s in the decision tree for /" 1,. One
shall consider the initial segment of 7 such that |r| = s. This would restrict F' |, to k terms,
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9.3 The Switching Lemma

The basic idea in the random restrictions technique is to randomly set the variables so that a
constant sized circuit can be replaced by some other equivalent one. The A of Vs get switched to
an V of As and vice-versa. Hastad ([11]) generalized the conditions under which such restrictions
are applicable, into the Switching Lemma.

Suppose one is given a DNF formula, where each term has < r variables, and a restriction
where the probability of a variable surviving is p, is applied to it. One cannot switch to a CNF
formula, where each clause has size < s, with a probability < (5pr)°. Beame ([4]) showed that
this probability is < (7pr)® using simpler techniques via Decision Trees.

9.3.1 Decision Trees Approach

01 = x1:=0 x2:=1
Op = xl:=1 x2:=0

3
O3 = x1;:1 X22=1

Figure 9.4: A Constructive Example of a Canonical Decision Tree.

One is given a DNF formula F =t V{3 V...V t; where each term ¢; has < r variables. If one
were to define an ordering on the variables, and also an ordering on all the terms, then there
would be a unique way of writing down the formula. Now, if ¢ is a partial assignment to the
variables, then F 1, is the formula that results by restricting F' to o. The canonical decision
tree for F is inductively defined as,

o If F'is a constant 0 or 1, then a single leaf node is the tree.

o Define F' = t; V I'. Take the variables occurring in #; and draw a complete tree. Each
leaf [, in the tree corresponds to a partial assignment o. At [, one suspends the canonical
decision tree corresponding to the formula F T,, i.e. F restricted on o. There will be a
single restriction corresponding to #; that makes the formula F go to 1. On all other os,

Fl,=F1, (Why?)
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(1) Simplification of the formula to reduce the depth from k to (k — 1).
(2) The size of the circuit should not increase by much.
(3) There should still be enough variables left untouched.

If one were able to repeatedly apply this process adhering to the above objectives, then one
would ultimately reach a depth of 2. In the above process, the size of the circuit after each
step has not increased too much. And, the number of steps is a constant, (k — 2). Therefore,
the circuit for depth 2 that results will be polynomial-sized. But, we already know that there
cannot be a polynomial-size constant depth-2 circuit for PARITY . And, this contradicts our
earlier intuition. Hence, there cannot be a polynomial-size constant depth circuit for PARITY .

The intuition will be transformed to truth if one can show the existence of partial assignments
that meet the above objectives. This whole notion is termed random restrictions ([10]). The
number of variables that should survive a random restriction is \/n. This can be achieved if
one uses the following random scheme for partial assignment.

Pr(X survives) = ﬁ
Pr(X =1)= (1 - \/LE) = Fzpected number of variables untouched is \/n.
Pr(X = 0) = }(1- 3

Consider a wide fan-in gate (i.e. fan-in > clogn) at level 1. Even if a single 0 comes on any
of its inputs, it will vanish in the simplification. That is, the probability that a wide fan-in
gate stays on to the next step is the probability that no 0 occurs on any of its inputs. This

clogn
probability is (1 -1 - ﬁ)) g

will for all practical purposes vanish.

frwe = AR

Figure 9.3: A surviving A — V block.

. This probability is very small, and therefore the wide gates

Let us now consider the narrow gates (fan-in < clogn). The above argument will not work.
Let us look at the survival of a narrow gate as a bounded (for some constant ¢) fan-in gate.
Pr( number of surviving variables > ¢) < 771—6 That is, the gates that do survive will have
bounded fan-in (say, < 5) as shown in Fig 9.3. An V of As of constant size, can be converted
into an A of Vs using standard Boolean Algebra. This would then imply that the (k —2)* and
the (k — l)th layers will be As. These can be merged into a single layer, thus reducing the depth
of the circuit to (k —1).
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9.1.1 Background

Ajtai ([1]) showed using logic that PARITY ¢ ACY. Furst, Save & Sipser ([10]) were the
first to show PARITY ¢ AC°. They used the notion of random restrictions to show that
any constant-depth circuit for PARITY cannot be polynomial sized. Yao ([22]) went on to
show that an exponential size circuit would be required to realize PARITY in constant depth.
Hastad in his seminal work ([11]) showed a near optimal bound (i.e. the upper and lower bounds
differ by a constant factor), using the Switching Lemma reported in ([11]).

Razborov ([15]) showed the same result as Hastad’s using algebraic techniques which he chris-
tened approzimations. Smolensky ([19]) improved these results. AC°[mod(q)] is the class of
AC? circuits enhanced with mod(q)-gates. Smolensky showed that if one wants to do mod(p)
using {A,V,mod(q)} gates, and if p and ¢ are relatively prime, then mod(p) ¢ AC°[mod(q)].

While we are on lower bounds, the other known bounds are that TCS # TCY. That is, there
are some functions in Tcg that are not in Tcg. The current status is that one does not know

TCY 4 TCY?

Razborov ([16]) simplified the Switching Lemma using counting arguments. Laplante & Fortnow
([9]) have provided a commentary of the Switching Lemma via Kolmogorov Complexity. Beame’s
commentary ([4]) on the Switching Lemma uses Decision Trees. This latter commentary is what
we shall follow.

9.2 Random Restrictions

Furst, Saxe & Sipser ([10]) had the following intuition. Assume that there exists a polynomial-
size constant depth circuit for PARITY . Look at the bottom 3 levels of a constant depth-k
circuit for PARITY , as shown in Fig 9.2.

Figure 9.2: A depth-k ACY circuit for PARITY .

Suppose one applies a partial assignment to the circuit, i.e. randomly assign some variables
0,1 values leaving some others untouched. The partial assignment should meet the following
objectives:-
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In this and the next set of lecture notes, we shall discuss some of the techniques that have been
developed to show that PARITY ¢ AC®. These results are towards showing AC? C TC°.
Hastad’s Switching Lemma ([11]) and Razborov’s Approzimations ([15]) shall be discussed.

9.1 Introduction

Let us look at the intuition behind why PARITY ¢ ACY (ACY is the subclass of AC? circuits
that can be realized in depth k, where k is a constant). PARITY on n inputs has 277!
minterms. Let us look at the bottom level fan-in as shown in Fig 9.1 of a DNF formula for
PARITY. We claim that the bottom level fan-in of the A-gate has to be n. Why?

PARITY

Bottom Level
fan-in

N

Figure 9.1: An ACY circuit for PARITY .

If the bottom level fan-in for some A-gate is less than n, then the term corresponding to the
A-gate would have some missing input variable(s). Let us pick an assignment to the input
variables that fires the A-gate in question. In this assignment if one were to change the value
of the missing variable, the A-gate would continue to fire. This means that PARITY would
continue to be the same despite toggling some input variable!

Therefore, each bottom level A-gate necessarily has to have a fan-in of n, which would mean
that an exponential number of gates will be required to realize PARITY in depth-2. The dual
argument holds for the depth-2 realization of a CNF formula for PARITY .

Can this argument be extended to show PARITY ¢ ACY? Or, do you have some intuition for
this?
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One finds ¢,,;4 by cycling through all configurations. While asserting some triple, one would
have to assert some other triples. With the help of the stack, one recurses on the triples to
answer the questions that are generated. The size of each triple is 3 - s(n) and there would be
s(n) triples on the stack. That is, the space requirements would be 3 - s*(n).

8.4.1 A few open questions

Savitch showed that NSPACE(s(n)) C DSPACE(s*(n)). It is not known whether one can
show NSPACE(s(n)) C DSPACE(s*=%(n)). In the logspace world, several interesting things
have been shown are are still to be shown.

We know that AL C P and also that AL C DSPACE(log’n). But, it does follow that
NL C DSPACE,TIME(log?n,n®M).  This is an open question. Nisan ([14]) showed
that RL C DSPACE,TLME(Ioan,no(l)). It is open whether the inclusion holds for

DSPACE, TIM E(logzn, n®M).

Note: RL is the logspace bounded randomized machine that accepts if the number of accepting
paths is greater than % of the total number of paths.

3

Saks & Zhou used ideas from ([14]) to show that RSPACFE(s(n)) C DSPACE(s2(n)).
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Set countery = 0; countgy = 0.
For each vertex v at level d + 1.
For each vertex w at level d.
Guess w is reachable from s.
If w is indeed reachable from s then
increment countery.
If there is an edge w — » then.
Set flag reachable.
If countery = county then
If reachable flag set then
Increment countqy.
Else, reject.

One stops at a level k£ 4+ 1 when county = countyyq.

Exercise: The above two schemes need to be merged in order to show that AL is closed under
complementation. How many log n bits would be required in total?

8.4 Savitch’s Theorem

Savitch ([18]) showed that NSPACE(s(n)) € DSPACE(s*(n)) for s(n) > logn. That is,
given an s(n) space bounded nondeterministic machine, one can simulate it deterministically
in a s?(n) space bounded machine. Now, if s(n) = n°(") then, we have NSPACE(n°M) =
DSPACE(nCM) = PSPACE.

Cinitial

oS(n)

Cmid

accept
Cfinal

Figure 8.6: Computation tree for NSPACE(s(n)).

Consider the computation tree for a NSPACFE(s(n)) machine, as shown in Fig 8.6, with
Cinitial and €41 as the initial and final configurations. One needs to check the existence
of a path ¢;nitia1 — Cfinar. This path existence question can be encapsulated as a triple,
path(cmimh(:fmal,Qs(”)). For ¢ipnitiat — €final to be answered in the affirmative, the triples
path(Cinitial, Cmids 2‘9(”)_]) and path(cmid,Cﬂnaz,Qs(”’)_]) should be true for some c,,;4. That is,
there must be a mid-point, ¢,,;4, such that there are paths ¢;pitia1 — ¢miqg and €piq — Crinal
of size 25(")=1 each.
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Kill a path if it fails to discover a path from s to ».
If a path is found from s to », then decrement count.
If count is 0, then Accept. Else Reject.

®
vertexis vertex isnot
reachable reachable
)
checking

reachability of
vertex from s

success failure success

Figure 8.4: The s-t connectivity solution when count is given.

Fig 8.4 shows a single step in the iteration of the above algorithm. The space requirements for
the above algorithm indicates that it is safely in N'L.

Current vertex Vertex being currently checked. = O(logn) bits
Vertex count The reachable vertices count. = O(logn) bits
Reachable Flag The guess for the current vertex. 1 bit
Intermediate vertex | O(logn) bits for showing s — vertez.

- — @ -

—

|

|

|

|
o
+
[

I I
| I |
I I |
| I ¢ |
I I |
level O level 1 level 2 level d

Figure 8.5: The layered graph and inductive counting.

What remains to be shown is that count can be found in N'L. Let us look at a layered graph
as shown in Fig 8.5. For each layer £ one shall maintain a count of the number of vertices upto
layer k that are reachable from s through the variable county. count; would be the vertices in
layer 1 that are reachable from s, i.e., the neighbours of s. We shall indicate by way of inductive
counting how one can find the number of vertices upto layer (d + 1) given county, the number
of vertices upto layer d reachable from s.
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G. One feels that one cannot conclude such global information from some local information
and hence the mind block.

exponential

N /'::: ya

Figure 8.3: The s-t connectivity problem with exponential paths.

Consider another aspect. The graph in Fig 8.3 has an exponential number of paths from s
to t. In other words, in an N'L computation too, one could have an exponential number of
paths to check. The coN L problem would require all of these exponential paths to be rejecting.
Checking this within the limitations of logspace did not seem possible.

8.3 Inductive Counting

Suppose one is given n bits, x1,29,...,%,, and that there are exactly k£ 1s in the input. No
information about the arrangement of the 1s is given. How would one invert the input bits
using monotone circuits? (Hint: Threshold gates can be used.)

Consider the i*" bit z;. If it is a 1, the number of 1s in the remaining input bits will be k — 1.
And, if z; is 0, the sum is k. Hence, setting

Y = Xy = Thz_l(X\aci) Vi

One has already seen monotone realizations of T'h}.

Let us come back to STCONN. Suppose, in addition to being given < G, s, >, one is also
given the count of the vertices that are reachable from s. How would one solve STCONN,
the complementary problem?

Let us assume the vertices are numbered such that s is 1 and ¢ is n. The following algorithm
can decide STCON N. Assume one knows count.

Forv=1ton—1
Guess if v is reachable from s.
If the guess is reachable, then
Prove < G, s,v >.



Lecture 13 : March 11, 1997 56

head at #' in one step.

L o o J ] mpurTape

Finite Control

%

TSN worae

Figure 8.1: A Turing Machine.

Setting s =< #,¢0,0,0 > and t =< ¢,q,0,n* >, one has an instance of STCONN. The
reduction itself can be accomplished in DLOG. (Exercise: Show how the reduction can be done

in DLOG?)
Note: One can enforce the AL machine to clear its WT and reset its head before accepting.

Showing N'L C P is left as an exercise. It follows from a polynomial algorithm for STCONN.

8.2 The Mind block

Showing that AL is closed under complementation was left untouched for a long time because of
a mind block among researchers. Consider some instance of STCONN as illustrated in Fig 8.2.

S t

Figure 8.2: An instance of STCONN.

The complementary problem is one of finding whether s and ¢ are unconnected. To show N'L is
closed under complementation, one would have to do the reduction from (G, s,t) — (G', s, 1)
such that whenever there is a path from s to ¢ in G, there are no paths from s’ to ¢ in G’ and
vice-versa.

The algorithm that we presented for STCONN used some local information only, i.e. the current
and sink vertices. In the process one was able to say something about the existence of a path
from s tot. Concluding that thereis no path from s to t would be saying something global about
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This lecture focuses on the fundamental result by Immerman ([12]) and Szelepcsényi ([20]).
They independently showed that 'L ( Non-deterministic Logspace) is closed under complemen-
tation. In fact, Immerman ([12]) extends the result to any nondeterministic space class higher
than and including N'L. Savitch’s theorem ([18]) shall also be discussed.

8.1 s-t connectivity (STCONN)

Suppose one is given the following problem.

Input: < G,s,t> where G is a DAG, and s and ¢ are 2 special vertices.
Question: Is there a path from s to ¢t in G?

Let us see how one can solve this. Fach vertex would require logn bits. Starting at the initial
vertex s, the algorithm proceeds as:-

1. Set v to be the current vertex.

2.  Non-deterministically go to some neighbour of ».
3. Check if this vertex is f.

4. 1If not, go to step 1.

All one needs to remember is the current vertex and the sink vertex. That is, O(logn) bits are
sufficient for the algorithm to answer the STCONN question. STCONN is N'L-Complete. We
shall see why.

One needs to show a reduction of every AL machine, M, on input z to STCONN to prove that
the latter is A'/L-Complete. Let us consider the A’/ machine shown in Fig 8.1. The work tape
is bounded by O(logn) bits. The Instantaneous Description (ID), i.e. the configuration of the
machine at any instant of time, consists of

Work Tape Contents | Requires O(logn) bits.

State of the machine | There are a finite number of states, i.e. some constant k.
Input Head Position | Requires O(logn) bits.

Timer Polynomial time is sufficient, i.e., O(logn) bits.

o)

The total number of configurations is n since each configuration requires O(logn) bits.

Now, consider the graph G(V, E') whose vertex set, V, is the set of all configurations. A directed
edge exists between 2 configurations vy and v, if vy is reachable from vy in one step. That is,
F consists of edges < w,q,i,t >—< w',¢,i',t + 1 > if the machine starting in state ¢, with
WT contents w and the input head at i goes to state ¢/, with WT contents w’ and the input
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by f-g if R3 is initialized to 1.

100 1 0 0 1 00 100
(ryrgrg)-| f L O -] 0O 1T O0f-| =f 10 0 1 0 |=(ri+rs-f-g]lrars)
0 01 0 —g 1 0 01 0 g 1

Again note that the values of registers Ry and R3 are left unchanged at the end of the operation.

Theorem 5 (Ben-Or & Cleve) ([6])
Over an arbitrary ring (R,+,-,0,1), any formula f(z1,29,...,2,) of depth d is computed by a
straight-line program that uses 3 registers and has length at most 4.

Proof: One shall prove the result recursively on the depth d. When d = 0, a single statement
offsets register Ry by Try-cor +—ry-2; for somei € {1,2,...,n}. For any other depth d > 0, if
the left and right operands are f and ¢, then we saw how to get the 4+ and - operations through
straight-line programs.

Now, since the maximal recursive factor per level of the depth is at most 4, if the depth of the
formula is d then the length of the straight-line program is 4¢. W

Using Brent’s result ([8]) that any polynomial size expression tree can be converted into an
equivalent one of depth O(logn), one can state the following corollary,

Corollary 1 Over an arbitrary ring (R,+,-,0,1), a formula of size s is computed by a straight-
line program, of the form stated above, that uses 3 registers and has length polynomial in s.
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7.3.1 Outfall of Barrington’s result

It is known that LOGSPACE C PSPACE, and the inclusion is strict. With Barrington’s
result, it seemed surprisingly possible to get a P.SPAC F machine from a LOGS PAC'FE machine
with some additional ”information”. Suppose one has a notion of an epoch and is allowed to
carry along just § bits of information across epochs. One runs a LOGS PACFE machine for an
epoch, which is a polynomial amount of time, and at the end retains just 5 bits of information
about the epoch. In the next epoch, one runs the LOGSPACFE machine with this 5 bits of
information. Continuing this way, it would be possible to reach PSPACE.

The whole idea seems very philosophically appealing.

7.4 Ben-Or & Cleve’s Result

Ben-Or & Cleve in ([6]) showed the following result. Let f(zi,z2,...,2,) be an algebraic
formula of size s over an arbitrary ring (R, +,-,0,1). One can construct a straight-line program
of length polynomial in s that computes f(z1,22,...,2,) and uses 3 registers.

The straight-line programs that arise in the constructions have a special form. These consist
of statements that apply special invertible linear operations to the registers. One can consider
each possible configuration of values of the 3 registers as a vector in R>. The effect of executing
a statement of these straight-line programs is equivalent to multiplying this vector by a 3X3
matrix with determinant 1. That is, the statements can be treated as elements from the special

linear group SL3(R) = {A:det(A) =1 and A has dimension 3}.

Suppose, the 3 registers are Ry, R, R3. The effect of multiplying the vector (rq 72 r3), formed
by the values of the 3 registers, with an element from SL3(R) is,

o = O

1 0
(rirgrs)- | f 0 [ =(ri+re:flrars)
0 1

That is, register Rys value is offset by f times the value of register Ry. Let us consider the
composition of matrix multiplications,

=([r+re-fHre-g]rars)

o = O
—_ o o
o = O
—_ o o

1 1
(rorams)- | f )
0 0
That is, if the left and right operands of a + node are f and g and ry = 1, the effect of the

above composition of matrices is to offset the value of Ry by f+ ¢g. Note that, the values of the
other two registers are unchanged during the operation.

Let us consider the - node in the expression tree whose left and right operands are f and g. The
following composition of matrices achieves the effect of offsetting the value of the Ry register
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Proof: Suppose B is the 5 — PBP that five-cycle recognizes A with output o. Let the last
instruction be < 7, u, p >. If the last instruction were changed to < 4, uo™!, po=! >, then the
program would accept on inputs that are rejected by B and reject on inputs accepted by B. B

We need to show that NC!' C 5 — BWBP. Consider a A-gate. WILOG the left and right

operands are [, and r, taking values,

ZA:{el, if1 TA:{BQ, if1

e, otherwise e, otherwise

The table below shows the effect of a commutator node on the operands of the A-gate.

TA — e 0,

Irl

€ ececeliel=e | e fy-e71.0 =e
b Bioe 07 e T =e| 60,0707 = 6;

Only when both the operands of the A-gate are 1s, will we get another five-cycle as the output.
This indicates that the commutator acts as a A-gate. We earlier saw that the complement of a
language can be recognized by a 5 — PBP of the same length. That is, the —-gate can also be
cast in the 5 — PBP framework. This effectively means that one can convert a Boolean circuit
intoab— PBP.

What one needs to show now is that the size of a 5 — PBP program corresponding to a NC?!
circuit is polynomial. In ([3]), Barrington stated the following theorem:-

Theorem 4 Let a set A C [2]" be recognized by a depth d fan-in 2 Boolean circuit. Then A
can be five-cycle recognized by a 5 — PBP B of length at most 4°.

Proof: We shall use induction on the depth d to prove the result. The base case, d = 0, where
the circuit has no gates can be recognized by a single instruction 5 — PBP. Assume that the
theorem is true for all circuits of depth < (d —1). Consider a depth d circuit. Its two operands
can be of depth at most (d — 1) and the 5 — PBPs that recognize them are of length at most
491 WTLOG one can assume that the output gate is a A-gate (a V-gate can be expressed using
A and —-gates).

Let the 5 — PBPs for the left and right operands be B; and B, of length at most 49=" with their
output permutations being forced to #; and 65, as in lemma 1. We construct B] and B] such
that their output permutations are 01_1 and 02_1 resp. From lemma 2 we know that the length
of the programs B] and B will not increase. If one concatenates the programs By, B,,B] and
Bl one will have the desired program B which will output 63 iff the left and right operands of
the A-gate are 1s. And the length of B is at most 47, W

If one sets d to be O(logn), then one has a NC' circuit with the corresponding 5 — PBP
being polynomial in size. This means that NC!' C 5 — BWBP. And, we already saw that
5— BWBP C NC'. This means that polynomial-size Bounded-Width Branching Programs
correspond exactly to NC'.
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3, and starting from 3 one should end in 1, and so on. Fig 7.3 shows the equivalent acceptance
condition of a PBP in the BP framework. Note that, concatenating PBPs amounts to A NDing.

12345

t+ t+

Figure 7.3: PBPs in BP framework.

Barrington put a further restriction on the permutations and asserted that 5 — cycles were
sufficient. That is, a 5 — PBP B five-cycle recognizes a set A C [2]™ if there exists a five-
cycle o (called the output) in the permutation group S5 such that B(z) = o if 2 € A and

B(z)=eif z ¢ A. ([3])
We shall state a few properties of five-cycles from ([3]).

Lemma 1 There are five-cycles 81 and 0y in S5 with the property that their commutator is
also a five-cycle. That is,

15 — CyClES 01,02,03 s.t. [01,02] 7£ €, 1.€. 01020]_102_1 = 03

Proof: The #,0, and 63 for which this works is

(12345)(13542)(54321)(24531) = (13254)

Lemma 2 If B five-cycle recognizes A with output o and T is any five-cycle, then there exists
ab— PBP B', of the same length as B, which five-cycle recognizes A with output .

Proof: Since ¢ and 7 are five-cycles, there exists some permutation § with 7 = of=1. If one

changes the o; and 7; in each instruction to f#o;0~" and #m;,6~', one would get the required
program B’ that accepts on 7 and is of the same length as B. B

Lemma 3 If A can be five-cycle recognized in length I, so can its complement.
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7.3 Bounded-Width Branching Programs

In branching programs we have the scenario shown in Fig 7.2. Given an input, certain paths
only would be active. In this restricted graph, if there is a path s — ¢, then the input is
accepted and if there is a path s — ¢_, then the input is rejected.

~ 7 t+
RN
Xl
<
~ t.

Figure 7.2: Branching Program.

Width-k Branching Program would be a BP where the number of rows is bounded by a constant
k. We already saw that width-5 BP C NC'.

BPs have too much flexibility and it is difficult to pin-down their power. Barrington used a re-
stricted version of BPs called Permutation Branching Programs (PBPs) under the permutation
group S5.

Each instruction in a 5 — PBP is of the form (z;,0;,7;). This is to be interpreted as if z;
then o; else v;. x; is an input symbol and each o; and 7; is a permutation in S5. A 5-PBP
would be a sequence of such straight-line instructions. On an input, we would get an evaluation
of the form ajay...a, where each «; is either o; or v; depending on the input z;. This is
a composition of permutations whose result is another permutation from S5. The acceptance
condition for a 5-PBP is defined as

T1%g...T, € L = ajag...a, =0

T1%2 ... T & L = g ..., =€

The acceptance condition for a BP was defined based on whether there is a path s — ¢, while
for a PBP it is dependent on the composition of the permutations being equal to a specific one,
f. Does this mean a PBP is not a BP? No, one can translate the PBP acceptance criterion into
the BP framework.

4 5 1 3 2
can also be written in the cycle notation as (1 4 3)(2 5). In the BP framework, this amounts

Let us take an example where the accepting permutation # is given by ( 12345 ) . This

to saying that, starting from 1, one should end up in 4, and starting from 4, one should end at
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The first scheme is shown in Fig 7.1. If one considers the separated sub-tree as a variable z,
then the evaluation of the whole tree can be expressed in terms of z as, Pz + ) where P and @)
are constants. By setting z = 0, one would get @) and, by setting 2 = 1 one would get P + Q).
If one subtracts these two quantities, one would be able to get P and @) separately. Then, z
as evaluated by the separated sub-tree can be plugged in at the appropriate place to get our
rejoined function.

0
Figure 7.1: A scheme for joining the separated sub-trees.

The problem with this scheme is that a circuit which originally contained just + and *, now
contains —. The — operation might not be meaningful over certain rings.

The second method is due to Brent([8]). In an arithmetic tree with m nodes, one can always
find a node v, whose left and right children are [, and r,, with the following property,

m m m
ﬁ(?}) > ’_5 + ]-‘ ; ﬁ(lv) < 5 ; ﬁ(rv) < 5
Exercise: Show that the above property holds for any tree.
{ Hint: A partial condition holds for a path from the root to a terminal node. Extend this to
show that of all these paths, one satisfies the above property.}

Exercise: This problem is about inverting a sorted input.

Input Ty .., — 1FQ"F

Output  y1yp...yp, — 0F177F
A naive realization for the above would be y; = —z;, that requires n —-gates. One should invert
the input using at most O(log n) —-gates. This is part of a result shown by Markov that in any
circuit, at most log n negations are sufficient.
Hint: Use binary search and generate an NC' circuit.
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Barrington’s seminal paper on Bounded-Width Branching Programs (BWBP) shall be discussed.
We shall also look at Ben-Or & Cleve’s result showing that any polynomial size expression tree
can be evaluated using 3 registers. This result was inspired by Barrington’s paper. But first,
we shall clarify a few things from the previous lectures.

7.1 PARITY revisited

We had looked at PARITY in lecture 9. There we had shown that by changing each input
z; — (1 — 2z;) and taking a product, we could figure out PARITY . In fact, there exists a
rather simple function for PARITY , a GAPAC? function.

PARITY (z1,22,...,%,) = Zn: (H(l - 293j)) z;

i=1 \j<i

Let us consider an example. The input 0001011010 results in the following intermediate results
Input oo o1 0 1 1 0 1 0
Product term 11 11 -1 -1 1 -1 -1 1]|=0,i.e. even parity.
Summation terms [0 0 0 1 0 -1 1 0 -1 0

Exercise: The above characterization of PARITY requires (n — 1) subtractions. Can this be
reduced to anything below (n — 1)? In fact, it is an open problem as to whether PARITY
necessarily requires greater than one —1s. This would then mean that PARITY ¢ DIFFAC®.

Exercise: Show the following identities,

(a,) ;xz _ ( l;z ) + ZTZT]

9 i=1 i<
o | T =Z[H%(?)H%?]
9 =1 |j<i >

7.2 Brent’s result revisited

If one recalls, Brent’s result was shown for Boolean binary trees. Here we shall briefly outline
two schemes to show that the result indeed does hold for general arithmetic circuits.
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width as a resource and tried to identify the power of DBPs. Fig 6.5 illustrates how PARITY
can be accomplished as a width-2 DBP.

® O (even parity)

® 1 (odd parity)

Figure 6.5: PARITY is in width-2 DBPs.

The major question in the 80s was whether M AJORITY can be computed using bounded
width DBPs. 1t was strongly suspected that M AJORITY cannot be realized by bounded-width
DBPs, until Barrington showed that NC' is ezactly width-5 DBPs, also termed as bounded

width-5 branching programs (5-BWBP).

' \ \ \

nk §->m | mpg-->1 S-->m , my->1 S->m 5 mg->1

Figure 6.6: Showing 5-BWBP C NC!.

Showing 5-BWBPs C NC' is rather simple. Take the mid-points my, ma, ms3, mg, ms. If there
is a path from s — 1, then it must pass through at least one of the mid-points. Hence, to
verify that on an input there is a path from s to 1, one checks if at least one of the following is

satisfied,
(s — my) /\ (m; — 1) where 1 <i<5

We can then proceed recursively with the verification. This scheme can be converted into a
circuit as shown in Fig 6.6. Since the size (i.e. length) of the 5-BWBP is a polynomial, the
depth of the circuit is O(logn). That is, an NC" circuit. More of Barrington’s result in the

next lecture.
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Any arithmetic tree can be converted into an NC?! circuit. The %—% separator trick does not
work in this general case. It is also known that if division is allowed, the tree can be converted

to an NC' circuit with a single division.

6.1.4 Evaluating and expression tree

While we are on trees, there is an interesting problem of determining how many registers would
be required to evaluate an expression tree (arithmetic or boolean). The naive technique of
computing the operands and then performing the operation, when at an internal node, requires
O(logn) registers. In fact, any of the standard tree traversal schemes (depth-first traversal and
its variants) require O(logn) registers.

Ben-Or and Cleave have shown that this evaluation can be done with just 3 registers! We shall
look at this result in a later lecture.

6.2 Branching Programs

A Deterministic Branching Program(DBP) is a DAG with a special designated vertex s, called
the source and two sink vertices 0 and 1. Every node v has an associated input z; and two
out-edges corresponding to the 0/1 value of z;. Given an input z1z3...z,, a path is defined
from s to either of the sink vertices. If there is a path from s to the sink vertex 1, then the
input is accepted, else rejected. Note that, a DBP can be converted into a layered DAG and
the width of the DBP is the maximum number of nodes in any particular layer.

0 o1
0 I
S
NG N o0
X3 1

Figure 6.4: Deterministic Branching Program:s.

D BPs are a generalization of DF As. D BPs can be viewed as a non- uniform FA. DF As are
online processes while D BPs are off-line in the sense that, in a DF A once an input is given,
it has to be necessarily consumed while in a DBP, an input can be looked at any time, any
number of times.

The width of a DBP can be viewed as the number of registers required for the computation to
complete. When one goes from one layer to the next, the register values can be updated and
the computation can proceed with these updated registers. So, a lot of people looked at the
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being Y3’s output. This is illustrated in Fig 6.3. Note that the selector gate is the function
# =c-zg+ c-xq. This can be realized by a depth 2 circuit.

m nodes

¥

sizein therange [m/3,2m/3]

Y1

Figure 6.2: Effect of %—% separator.

SELECTOR
Xq Xo

Figure 6.3: Joining the two sub-trees.

Let us consider the recurrence relation for the depth. D(z) is the depth of the resultant tree

with 2 number of nodes.
2m

If one expands out the recurrence relation, D(m) comes out to be O(logm). A similar recurrence
relation for the size shows that there is 2m + O(log m) increase in the size.

S(m) <m+3+5(—)

2m
3
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with a Boolean circuit where an internal node can have a fan-out greater than 1. Fig 6.1 gives
a sample circuit and its representation as a formula.

NC1 is the class of bounded fan-in polynomial sized circuits of depth O(logn). The standard
way of converting a circuit into a formula is by replicating every internal node as many times as
its fan-out. One can show that the conversion of an NC' circuit to its corresponding formula
causes a polynomial increase in the size.

Exercise: Show that the conversion of an N C'! circuit to a Boolean formula causes a polynomial
increase in its size.

This implies that NC' can be viewed as a Boolean Tree evaluation where the depth is O(logn).
Every binary tree of depth O(logn) is necessarily convertible to a NC' circuit. But then, this
would be restricting the type of trees that one is looking at. It would be better if one can talk
about trees that can be transformed into NC?! circuits. So, the question is, what are the types
of trees that can be transformed into NC?! circuits?

Brent showed in the mid-70s that any polynomial-sized tree can be converted into an equivalent

one of O(logn) depth.

2
6.1.2 -3 separator

1
3

Given a binary tree with m nodes, Brent claimed that there always exists a node such that the

subtree below it will have size in the range [%, 22]. How does one show the existence of such

a node?

Let us define the weight of a node to be the size of the subtree below it (i.e. the number of
descendants). Suppose one starts from the root and goes to the heavier child. One follows this
strategy till one reaches a leaf and then, one would have defined a path in the tree. Along this
path, starting from a weight of m, one has dropped to a weight of 1. One can now apply the
discrete version of Rolle‘s Mean Value Theorem.

There necessarily has to be some node with a weight just greater than sz And, the next node

would have a weight less than QTm But, this node cannot have a Weighf less than % since the

tree is a binary tree and the traversal strategy is that of moving to the heavier child.

6.1.3 Joining the two pieces

Once the tree has been separated by the %—% separator, as shown in Fig 6.2, how does one join
the two together. Note that the objective behind the whole exercise is to reduce the depth of

the tree to O(logn). This too remains to be shown.

Y, the separated sub-tree, is now treated as a variable in Y7, the dismembered tree. By making
two copies, Y{ and Y{”, of Y7 and assuming Y; to be 0 and 1 resp., one would have captured the
vagaries of Y. The selection of Y{ or Y{" is done through a selector gate with the control input



Lecture 10 : February 20, 1997 41

Computational Complexity Theory Spring 1997

Lecture 10 : February 20, 1997
Lecturer: V. Vinay Secribe: P. R. Subramanya

In this lecture we shall look at Brent‘s result on formulas. This will be continued on to an
introduction to Branching Programs which precludes Barrington’s seminal paper on NC! and
Bounded Width Permutation Branching Programs.

6.1 Brent’s result

Brent showed in the mid-70s that any polynomial-sized binary tree can be converted into an
equivalent tree of depth O(logn). In the next few sections, Boolean formulae will be defined
followed by Brent’s result.

6.1.1 Formulae

X1 X2Xg X6 X1 X2X5 X6
(a (b)

Figure 6.1: An example of a formula and its circuit

A Boolean formula is a tree, i.e. a DAG where every node except the root has a unique parent,
the inputs occur as leaves and each internal node is a Boolean binary operation. Contrast this
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This way one would have characterized GAPAC? in terms of the language classes. The main
result of Allender's paper is

Theorem 3 PAC® = T(CO.

The motivation for such an endeavour is to extend whatever little is known about AC and
TCO That is, it is known that ACY C TCY. By way of the intimate relationship between
GAPACY and TC?, one maybe able to extend the results from ACY onto GAPAC? and show
that TC? C NC'. That is, the proofs (or their techniques) from AC? C TC® might carry over
to proving TCY ¢ NC'.

5.4 Uniformity

Uniformity essentially addresses the issue of, how easy is it to construct {C,}, the family of
circuits, for a language. That is, given 17, can one build the circuit C,,. The types of uniformity

that interest us are:-
non — uni form

P-uniform

LOGspace-uniform

DLOGtime-uniform

Non — uni formity refers to those languages that may have small circuits, but it is very dif-

*
*
*
*

ficult to construct them. Tally languages are an example. These are languages of the form
{111,11111,...}. The circuit C,, for a particular value of n is either the constant 1 or 0. Since
there are an uncountable number of such languages but only a countable number of possible
circuits, some languages cannot be expressed easily.

P-uniformity refers to those languages whose circuit families can be constructed in polynomial
time. Similarly, one defines LOGspace-uniform and DLOGtime-uniform classes of languages.

It is an known that Iterated Multiplication € P —uniform TCV. It is open whether it belongs
to any of the lower uniformity classes.
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It is known that, if f € §ACY, then g = ( 5 ) € fACY. In fact, ( £ ) € fACY for any

constant k. The proof for this is rather ugly and a better proof is much awaited.

This would mean that PARITY € GAPAC®. The question whether PARITY € DIFFACP,
is an open one. The other open question is, does DZFFACY C GAPAC? And, is the inclusion
strict?

5.3 Main Result

The probabilistic language class PP is defined as the class of languages for which the ratio of
the accepting paths to the total number of paths in the computation tree is greater than 1/2,
% > % Contrast this with §P which is a counting class. These are functions
that count the number of accepting paths in the computation tree. Note that, §P is closed

under complementation, i.e. the negated machine is also §P.

i.e.

Let us now consider GAP P and look at a function f € §P. f is the function corresponding to
f negated. And F = f— fis the GAPP function that currently interests us. Fig 5.3 illustrates
the GAPP function one is referring.

GAP P function

#P m/c negated #P m/c

101..1 010..0

Figure 5.3: Connection between PP and GAPP.

If the value of F’ on an input is greater than 0, it amounts to saying that the number of accepting
paths (i.e. value of f) is greater than the number of rejecting paths (i.e. value of f). That is,
the majority of the paths in computation tree of f are accepting. The reverse holds if F* < 0.
This is a new characterization for the probabilistic classes.

PACO (probabilistic ACO) can be characterized in terms of GAPACP. That is, L € PACY if

cire

3f € GAPACY such that z € L = f(z) > 0.

Once back in the languages domain, one would like to exactly pin down the position of PACO.
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Hint: Assume the circuit is semi-unbounded and use induction.

It is generally true that for the higher classes, every GAP circuit can be equivalently transformed
into a DIFF circuit.

In this lecture, we shall show that PARITY € GAPACP. In a later lecture we shall see that
PARITY ¢ ACP. This essentially reaffirms our intuition that arithmetic circuits are strictly
more powerful than their Boolean counterparts.

5.2 PARITY, GAPAC" and DIFFACY

PARITY essentially requires a mod(2) operation on the sum of the inputs, i.e. PARITY =
S"xi(mod(2)). The mod(2) operation proves to be a stumbling block for a GAP AC? realization.
Equivalently, one can convert each input z; to now be (1 —2z;). This would transform an input
lor0toa—1or 1 respectively. Fig 5.2 shows how this can be achieved.

A
AN

Figure 5.2: Transforming input z; to (1 — 2z;).

Now, if one were to take a product of all the modified inputs, the output would be —1 if there
were an odd number of 1s in the input, else 1. That is, if the PARI'TY is even the output is
1, else it is —1. Suppose one were to add 1 to the output, the output would be € {0,2}. All
these steps can be realized in a circuit using a constant number of levels.

How does one get an output of {0,1} instead of {0,2}? Dividing by 2 would seem to be the
answer, but remember that division is beyond ACY, and therefore, is ruled out. An interesting

way out is to use 5 , where f is some function value. In our case, the answers would be as

2
we want, i.e. ( (2) ) =0 and ( 9 ) = 1. But, why resort to this?
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In this lecture, we shall firstly prepare the necessary background for Allender’s talk. The talk
itself shall be summarized subsequently.

5.1 Arithmetic Circuits

Let us look at the circuit characterization of NP. Suppose one transforms the circuit in the
following natural way,

AN—xV—+,2, — z;and Z; — 1 — z;.
This transformed circuit evaluates the number of solutions i.e. accepting subtrees in the NP
computation. This arithmetization of a Boolean Circuit also works for NLOG and LOGCFL,
though it is rather difficult to show for the latter.

Circuits that compute functions of the form f: ¥* — N are termed arithmetic circuits. Any
function over the ring (N, 4+, %) can be computed by arithmetic circuits. Now, if one wants to
compute functions that yield integer values, i.e. f: ¥* — 7, one can work with the constants
{0,1, —1}. Another way is to define f, as

f=ft—f" where ft : ¥* — Nand f~: ¥* — .
That is, one is realizing the function by working over the ring {N, +,*,0,1}.

The first scheme of generating functions over 7 yields the GAP classes, while the second yields
the DIFF classes. That is, if the decision version of the function f is in the class C, then the
two arithmetic characterizations stated above yield the GAPC and DIZFFC classes.

O,

0 1 0 1

Figure 5.1: Transformation of a GAP circuit to a DZFF circuit.

Exercise: Given a GAP circuit, prove that it can be transformed into an equivalent DZFF
circuit as shown in Fig 5.1.
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Since one is talking about LOGS PAC F reductions, the naive scheme of composing f; and f,
does not work. What one needs to do is the following:

(0)  f, starts off first and asks f; for a bit whenever it wants one.

(1) fo writes the required bit’s position on the tape and hands over control to fi.

(2) fi1 starts its computation keeping a count of the bits that it generates.

(3) fi discards its output till the desired output bit, and hands over control to fs.

(4)  f2 continues its computation till it requires another bit. Then the process repeats.

The above simulation can be done in LOGS PAC F provided f; and f; can. If the lengths of the
outputs of reductions increases quadratically, one can show that any number of LOGSPACFE
reductions can be combined.

4.4.3 Some other types of reductions

It has been proven that ACY reductions are sufficient for A"P-Complete problems. Another
type of reduction is projection. Ly <P'% [ if the following holds. Given

Zj
19 ..., € 14 cach v — oz
YViY2 .- -Ym € Lo v 0

1

It is conjectured that every known ANP-Complete is complete under projections. The isomor-
phism conjecture by Berman & Hartmanis states that an one-to-one onto polynomial time
invertible polynomial time computable map exists between any two NP-Complete problems.
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Now, let us look at P and NP with the view of trying to separate them. One would like to
show that some problem from AP is unlikely to be in P. And there is the other contrasting
goal of showing that a complete problem can be solved easily. Both these goals require that the
resources used in the reduction of problems be small, i.e. in P.

4.4.1 Showing something is N"P-Complete

An ANP-Complete problem by definition is a problem in AP to which all other prob-
lems in the class can be reduced to. Now, suppose one wants to show that a problem
G is NP-Complete. Suppose L is a known AN P-Complete problem. What one does is
(a) Show that G'€ N'P. This automatically means that G < L.

(b) Show that L <P @G.

An important point to note is the notion of transitivity/composability of reductions (i.e. func-

tions). VI I L1 G Does it necessarily follow that VI L 1902 @7 This is true in the
case of polynomial time computable reductions. We shall see later where this is not so obvious.

4.4.2 P-Completeness and LOGSPACE

The notion of completeness can be defined for most classes except the unnatural ones like RP,
BPP, etc. Let us consider P and DLOG. Analogous to N'P-Complete problems, questions
pertaining to P-Complete problems and DLOG are very relevant.

Languages in the class DLOG use O(log N ) space for deciding whether a string is in the language
or not. This means that the number of different configurations (essentially, states) that a DLOG
machine has is at most n?(*), i.e. a polynomial. If one were to simulate a DLOG machine using
a deterministic Turing machine, one can run through all the states and decide whether a string
is in the language or not, in n* + 1 steps at most. Hence, DLOG C P.

Once it is clear that DLOG is contained in P, one would like to know categorically whether
P C DLOG or not. Hence, one looks at the most difficult problems in P and attempts to look
for an easy solution within the resource constraints of the lower class DLOG.

There are two classes of problems that could arise.
(1) VLeP L<ks L.
(2) LeP.
If (1) alone holds, then L is P-Hard. If (1) and (2) hold, L is P-Complete. Showing a prob-

lem to be P-Complete proceeds in exactly the same way as showing that a prpblem is NP-

Complete. What is not obvious here is the question of composability of reductions. That is, are
LOGSPACE reductions preserved?

One could have the following scenario
2l=n L A =n? L |fye)] =0t
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$6L¢W23/4and

2p(n)
v ¢l = {y:<zy>€B}| <1/4

2p(n)

BPP is more of a democratic class. The probabilities are bounded away from 1/2 and hence
the name. Furthermore, this a symmetric class.

Definition 8 A language I € PP, Probabilistic Polynomial Time, if there exists a B € P and
a polynomial p, such that,

mEL:>|{y:<;’,+)EB}|21/2and

v ¢ L= Qu<zazeBll o q)9

PP is not a natural class essentially because it is not amplifiable.

As long as there is a meaningful notion of certificate/proofin a class C, one can define the classes
NC,RC,BPC and PC. Fig 4.4 shows the complexity hierarchy for the variants of the class P.

- RP J NP ~_
P BPP PP

coRP coNP

Figure 4.4: Relation among P, RP, NP, BPP and PP.

4.4 Notion of Completeness

Consider a complexity class C. It encompasses a number of problems of varying difficulty or
hardness. The hardest problem in the class stretches the resources available to C to the limit.
If one could solve such problems easily then the entire class would be easy. Hence, it makes
sense to identify the most difficult problems in a class.

The most difficult problems in a class are called the complete problems for the class. These
have the property that all other problems in the class can be reduced to the complete problem.
By reduction, one means a mapping from instances of a problem to instances of some other
problem.

Definition 9 Let f be a polynomial time computable many-one function. f reduces Ly to Ly
iff z € 1h < f(z) € Ly. This is written as I, <P L.

Assume a language I, € NP such that Vi € NP, L <,» L. Now if I, € P then NP C P. This
would mean that P = NP settling a long standing open problem.



Lecture 6-8 : February 11, 13 & 14, 1997 31

at any level of recursion is bounded by log N.

The size of the computation tree for primality testing is bounded by log? N. The size of the
circuit would be log® N and the verification time is log* N.

The above scheme is known as Pratt’s certificates. The standard measure for primality testing
schemes is number of multiplications. Pratt’s scheme requires log? N multiplications. Pomer-
ance reduced the number of multiplications to %log N using elliptic curves. And there is scope
for improvement.

4.3 RP,PP and BPP

Suppose the size of certificates for a problem is bounded by a polynomial p, i.e. |certificate| <
p(n). The total number of possible certificates is 27(") | If the number of certificates that lead
to acceptance is > 2P0 =1 then if a certificate is picked at random, with probability 1/2 it will
indeed be a certificate. The class of problems for which this scheme holds is called RP.

Random choice

/O\ | p(n)

Leaves \ ARAR R A

Figure 4.3: Computation Tree for Randomized Classes

Definition 6 A language . € RP, Randomized Polynomial Time, if there exists a B € P and
a polynomial p such that,

zel=|{y:<az,y>c B} >2°("-1 and

r¢ L=y <z,y>€ B} =0

The difference between NP and RP lies in the fact that the latter requires at least 1/2 the
leaves in the computation tree to be accepting. In fact, if the density of certifcates is an inverse
polynomial n%, one can use amplification to get any desired ratio. For example, if we repeat
the experiment n2 times, the probability of error is (1 — n%)h which is e~2.

Definition 7 A language 1. € BPP, Bounded-error Probabilistic Polynomial Time, if there
exists a B € P and a polynomial p, such that,
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Assume, a?~! = 1 mod(p). = a? = a mod(p)
= (a+1)P = (a? + 17)mod(p) = (a + 1)mod(p) = (a + 1)P~" = 1mod(p)
Consider the field Z,. There exists an element g in Z, which is the generator. g has an order
of p— 1. Now, given a number N, one defines Zy = {z : (z,N) = 1} = |Zn| = ¢(N) and
¢(N) < (N —1). If N is a composite number then Va where (¢, N)= 1, order(a) < (N —1).

Now, if one were told that 3a (e, p) = 1 and if one had to show that a is a generator one would

do the following;:

(1) a?~' =1 mod(p)

p=1 ) )

(2) a7 F1mod(p) Vg €{q1,q,...,qx} and (p— 1) = [T
Note that this works if and only if p is a prime.
Let us look at a non-deterministic algorithm to detect whether a number is a prime or not.
Given the number p, the algorithm is

1)  Guess a factorization {q1,¢q2,...,q} for (p —1).

2) Guess an @ and show that it is a generator.
3) Recurse and show that the ¢;s are also primes.

15119 prime?

1s59 prime?

2118- 1 (119)
2%% 1 (119)
2221 (119)

1529 prime?

a8=1(59)

Figure 4.2: Example for Primality Testing

Consider as an example, N = 113. Fig 4.2 illustrates the primality testing algorithm.

4.2.1 Analysis of Primality Testing

The recursion depth of the algorithm described above is bounded by log N, where N is the
given number. This is so because at each level of recursion, one recurses to the next level for
a number that is at most 1/2 the current number. Furthermore, at any level of recursion, the
primality question is asked for the prime factors of the parent number. The product of these
can never be greater than N. And since each of the numbers is at least 2, the number of nodes
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Definition 5 A function f:X* — N, f € 4P if 3B € P such that f(z) = |{y :< 2,y >€ B}|.

n
The permanent of a matrix A is defined as per(A) = Z H a; (). Note that, the determinant
o€ESy 1=1

of a matrix is defined very similarly as det(A) = Z H(—l)sgn(") * @ »(;)- Though these two
o€ESy 1=1

problems are very closely related, they are of contrasting difficulty. The det(A) problem is

known to be in NLOG. The problem, is per(A) > 07 is known to be in P. Valiant in a seminal

work showed that per(A) is §P-Complete. The notion of completeness is discussed in a later

section.

Let us consider another problem, st — connectivity. One is given a DAG with a source s and a
sink ¢. The question asked is, is there a path from s to t. In other words, are s and ¢ connected.
How would one solve this?

One stores the current node v and the sink node ¢ at any instant. At the start, v = s. One asks
the question, are v and t connected? From the current node, one non-deterministically goes to
a neighbour of ». If the neighbour is not the sink node ¢, set » to this neighbour. And ask again
whether » is connected to f.

If s and ¢ are connected, one would find it since some computation would have ended and
selected a path from s to t. The resources used by the algorithm presented above requires
one to store information about 2 nodes only. That is, 2logn bits would be sufficient for the
computation to be completed. One puts no constraint on the amount of time that the algorithm
should take. The st — connectivity problem is in the class NLOG since a non-deterministic
Turing machine with O(logn) space can decide whether s and ¢ are connected.

Similarly, one has the class DLOG and §£0OG. These are deterministic and counting versions
of LOGSPACE problems. It is known that evaluating det( A) is exactly equivalent to counting
the number of paths for s to ¢ in some graph G.

4.2 Primality Testing

In this section we shall slightly digress and talk about certificates that are not necessarrily
solutions to the problem in hand. One saw the following question being posed:

Question: Given N, is it a composite number?

Certificate: a,b such that N = a-b.

Can one think of a certificate that does not tell us how to factorize N?

One shall make use of Fermat’s Little Theorem which states that if (a,p) = 1 = a?~! =
1 mod(p). Fermat’s Little Theorem follows from the fact that (Z,,*) is a cyclic group of order
p — 1. Another way to prove the theorem is to look at (z + y)? = (2P + y?)mod(p) and use
induction. Now, 1771 = 1mod(p).
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- (' is indeed a cycle.
- all edges in C' do indeed exist in G.
- all the vertices in GG are included in C.

Each of these 3 steps can be done in polynomial time. If the input is provided as an adjacency
list, the input length is n?. If the witness is encoded as the end-points of the edges in the cycle,
the witness length is 2nlog n.

4.1.2 NP : Non-deterministic Polynomial Time

P is the class of problems that can be solved by a deterministic Turing machine in polynomial
time.

Definition 4 Let L CX*. Le NP if 3B € P, Jp-p is a polynomial, and z € L = Jy - |y| <
p(z) and < z,y >€ B. z here is the specific problem, y is the witness/certificate and the
existence problem < z,y >€ B is the verification /validation process.

There is an assymmetry in the notion of NP. If © ¢ L there should be no witness to the
contrary. This is identical to what in legal parlance one calls innocent unless proven guilty.
That is, proving a person’s innocence is too difficult since all witnesses should fail.

This assymmetry leads one to the complementary class, coN'P, for N'P. That is, if . € NP
then L € coN'P where L = {z : ¢ ¢ L}. Note that, P = coP since one gets an answer Yes/No
in polynomial time. The relation between the classes P, NP and coNP is shown in Fig 4.1.

Figure 4.1: Relation among P, NP and coN'P

4.1.3 {P and NLOG

We have indicated that in existence problems one is interested in the question, are there > 1
solutions? One could ask the question, how many solutions are there? Note that, this question
expects a numerical answer, i.e., given an input one has to output the number of solutions.
Such problems fall in the function classes called counting classes.

Let us consider the class §P.
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In the next few lectures a broad overview of Complexity Theory shall be presented.

4.1 Broad Overview of Complexity Theory

Given an alphabet X, a language I is a subset of the set of strings over ¥*, i.e. [ C X*.
A decision problem is one where one asks the question 'Does z € L?’. Similarly, an existence
problem is one where one asks ’Is there an x € L?’. These are problems that have an answer
Yes/No. We shall see some other problems that have a different type of answer.

4.1.1 Non-determinism

Let us explain the concept through a game. A professor in a respected university has a number
of students whom he/she advises. To each student the professor gives a problem P. The
professor can afford to give each student 1 hour/week. That is, the student has 1 hour/week
to convince the professor about a decision or existence proof. The amount of time spent in
arriving at the proof is not of relevance. What is important is whether the professor can verify
the correctness of the proof presented by the student in a fixed amount of time.

Suppose the professor asks the student the following question. Is the number N a compositie
number? The student might give a proof for compositeness of N as, N = p-¢. The professor
needs to verify that N indeed is the product of the two numbers p and ¢. This is rather easy.
N = p- ¢ that the student furnishes is a witness/certificate for the problem instance. The
length of the certificate should be polynomial in the length of the input since the validity of
the certificate should be checkable in polynomial time.

In order to show that N is not composite (i.e. N is prime), the student needs to provide a
witness/certificate. What would be a good witness? The naive technique of showing that none
of the numbers 2,3,...,v/N divides N, would be exponential in the length of the input (viz
log N).

Let us consider another example.
Instance: G is a graph (encoded in a reasonable manner).
Question: G has a Hamiltonian Cycle (i.e. every vertex of G is visited exactly once)?

The witness here is a cycle €. One needs to verify whether
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will be at most 42"/3 and, since p® can be at most 2n, we have

( 2n ) — pra S 42%/3 . (Qn)\/ﬂ

n
2n 2n/3 Von o 4 2n
= <4 . (2?1) <o <
n n

This is a contradiction. Hence, there must be prime in the range [n,2n].



Lecture 4-5 : January 28 & 30, 1997 24

3.3.4 Is there a prime in [n,2n]

A proof for the existence of a prime in the range [n,2n] using Erdds’ method above is discussed
2n!
(n!)?
factors. That is, n! = J[, p®. Let us consider a single prime and see what its exponent is likely

to be.

again. n! can be represented as a product of prime

below. Let us consider ( 2: ) =

1 P2 202 ... n
| |
- 1 1 I
p 2 3

Figure 3.2: The [1,n] line

As is evident from Fig 3.2, the exponent of p is given by a = \_%j + L;%J +.... The contributions

to a comes from log, n terms.

. . 2n . .
For a prime p that occurs in I its exponent is

2n 2n n n

=2 = =2 5 -

p p

=+

p p

Since 0 < |22| —2- |z] < 1, the contribution to the exponent of p by each pair will be at most
1. This means that the exponent a for a prime p can be at most log,, 2n. That is, for any prime

) 2 g L
pin < nn ), p* < 2n. In other words, the contribution of each prime is small.

Consider primes in the range (2n/3,n). These will not contribute to [, p™ since \_%”j is 2 and
2. [3] is also 2. Fig 3.3 shows the contributions of the primes.

anything contributes 0
_—= P —
| | | | |
| 1 I | |
’ @2 23 n o
- -
contributes 1 contributes 7?

Figure 3.3: The contributions by primes

Suppose there are no primes in the range [n,2n]. The contribution from the range [v/2n,2n/3]



Lecture 4-5 : January 28 & 30, 1997

This essentially means that no prime power can contribute too much.

=> 4" <dyp4r = Hpa < (2n+ l)ﬁ(2”+1) = nlogd <7(2n+1)-log2n+1
P

n

nlog 4
m(2 1) > —————.
= (20 + )_loan-l—l

Q| =

Simplifying, m(n) >
logn

Considering a slightly different integral, I, and doing integration by parts, we get

P= [ ey = [ (= >] [y (L

n+1 n+1
1
n—1 ,_, (1 — z)nt? n—1 [1 3 (1 — x)nt?

- P Y G SV | B . B NP s SO G SV A R
0+[n+1 v ( n+ 2 )0 n+1 O(n )33 ( n+ 2 )
~n—=1 n-2 1 r 1
n+l n+2 7 2n—1 2n (Qn)

n
n

I can be evaluated in the same way as I to get,

23

If I were to be integrated by parts as was done for I, we would be led to the fact that (2n+1)-

( 2: ) also divides dgy,41. But (2n 4+ 1) and n are co-primes. Hence,

2n

n-(2n-|—1)-(2:)|]d2n+1 ¢d2n+12n-(2n+1)-( N )Zn-4"222"+1

That is, dn, > 2" and therefore, 2" < d,, =[], p* < n™("). Taking logs, we can conclude that,

m(n) > 82

Let us look at the primes till 4nlog n.

anl ) > 4n -logn - log 2 >4n-logn-log2
m(dnlogn) 2 log4 + logn + loglogn — 2logn

That is, the n'* prime, p,, is as high as |p, < 4nlogn|.

>2nlog2>n
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Changing the range to [n/2,n], [n/4,n/2] and so on, we have,

= [ p<a/?, [T pr<at,
n/2<p<n nf4<p<n/2
- H p S 4n/2+n/4+... S AP
1<p<n

Taking log ,

Z logp < nlog4 = Z logp < nlog4
1<p<n Vn<p<n

1 1
=3 logn - Z 1= 3 logn - (m(n) — n(yv/n)) < nlog4
Vn<p<n
Adjusting the terms and, because 7(y/n) is at most \/n, we get

2nlog 4 2nlog4

logn

= m(n) = 7(Vn) < m(n) <

log n

. 2nlog4 .
Now, y/n is very small when compared to Togn " That is,

3nlog4 < 6n
logn ~ logn

m(n)

IN

This gives an upper bound for 7(n). We have been rather sloppy with the approximations.

3.3.3 A Lower Bound for =(n)

This lower bound proof is due to [13]. Consider the integral, I, defined as,
! ! - k n k - k n L
I:/ m”-(l—m)”dm:/ :L‘”-Z(—l) . - dm:Z(—l) . / 2" e
0 0 k=0 k k=0 k 0

" 1 P
=S E0E (T ) - - P
k;)( ) (k) n kT ontd Tara ot ey T, e

d, is the LCM of {1,2,...,n}. It follows that, dy,41 -1 > 1. Since z - (1 — z) < 1/4, it implies,

1
= |I|§ 4_n:>d2n+1 24”

If some prime power divides dy,41, then there must exist a number m between 1 and 2n + 1
which is also divided by the prime power. That is,

If p*|dentr =>3Im (1<m<2n41) st.p¥m =p*<m<2n+1
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3.3.1 The Number of Primes is Infinite

Proof by Contradiction is the standard high school way of proving that the number of primes
is infinite. Suppose there are a finite number of primes, P = {py,p2,...,px}, for some fixed k.
Every number should be divisible by at least one of the prime numbers from P. Consider, the
number (H§=1 p;) + 1, which is not in P. This is not divisible by any of the prime numbers in
P. Therefore, it too must be prime. But then, this is a contradiction.

Fuler presented a neat proof for this. Consider,

(%%)(Z%ﬁ)(z%)...zzi

k k n>1

This is true because every number n is factorizable into a set of prime factors. The product of
the summations in the [hs generates every possible prime factorization.

The sum of the infinite geometric progression is given by, >, # = 1—11/p' Rewriting this, we
have . .

2= I G / )

n>1 p ts prime p

Now, if there are a finite number of primes, then the rhsis finite. But, the [hs definitely diverges.
Hence, the number of primes must be infinite.

3.3.2 Erdés’ Proof

. . 2n ) . .
The innocuous looking ( " ) has some interesting properties.

- - - L >gn

2n \ _ 2n! (n+1)-(n+2)-...-2n  n+1 n+2 2n
~ (n!)? 1:2....n 1 2 n

As ( 2: ) is the largest term of all terms ( an

) , We can write,

o 2n n 2n 4" 2n "
(141) —Zk:<k>:>4 §(2n+1)<n):>2n+1§ ] <4

2
The primes in the range [n,2n] will survive in ( : ) since these cannot be cancelled. This

leads to,

= 11 ps(%f)sﬂ

n<p<2n
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3.3 A bit of Number Theory

7(n) denotes the number of prime numbers less than n. p, denotes the n'* prime. In this
section, we are interested in the following questions,

e What can we say about 7(n)? Can we give a lower bound for (n)?
e What can we say about p,, the n* prime?

e Does there necessarily exist a prime between n and 2n?

The Prime Number Theorem can be restated as

lim M =1
n—co n/logn
In 1792, Gauss first stated the theorem in a slightly different form. Chebyschev showed that

1z CaT

<m(z) <

log x log x

where ¢; = 0.95 and ¢y &~ 1.2. Hadamard and de la Vallée Poussin independently furnished a
proof in 1896.

Both used the Riemann-Zeta function to prove the Prime Number Theorem. The Riemann-Zeta

function is,
1
Ws) =2 —

nS
n>1

where s = o4 4t. Riemann conjectured that all the zeros of the function lie on the line ¢ = 1/2.
Hadamard’s and de la Vallée Poussin’s proofs required to show that there are no zeros in a
small region near ¢ = 1. Fig 3.1 illustrates the Riemann-Zeta function.

ol 12
critical region

Figure 3.1: Riemann-Zeta function ((s)

Selberg and Frdos independently proved the Prime Number Theorem using elementary tech-
niques.
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e Lastly, adding n log n-bit numbers is known to € 7'C°. This was shown in the previous
lecture.

This implies that computing b; mod(p) Vi,p can be done is TCP.

3.2.3 Computing B, € TC°

It is known that for any prime, p, the prime field 7, gives a cyclic group, Z7, under mul-
tiplication. That is, there exists a unique ¢ such that 1,g,¢% ¢>, ...,¢7~2 generates all of
{1,2,...,p— 1}. This means that we can maintain an element-exponent table of elements and
the corresponding exponents that generate it. That is, for each ¢ € {1,2,...,p— 1} we store
the exponent of ¢ that generates it. As there are a polynomial number of exponents in the
table, this can be hardwired.

Using the table, each product term can now be equivalently transformed to contain factors of
the form g7, for some 0 < j < (p — 1), instead of b¥s. Since, all the factors in a product term
are powers of the same ¢, multiplication now becomes an addition of the exponents of g. And
since, each exponent is log n bits, the addition can be done in 7°C?.

Note that, the sum of the exponents could exceed p. But, it is known that a = aPmod(p), and
therefore, we need to do mod(p) on the sum of the exponents. This again can be done in TC?.

At this stage, we have computed B, = []; b? in the form of ¢/, where 0 < j < (p—1). To
revert back to the element a € {1,2,...,p — 1}, we use the element-exponent table, as above,
except that we now go from the exponent to the residue. This again can be done in T°C°.

3.2.4 Winding up [lterated Multiplication € TC°

The next step is to compute Y = > cq, 0 1 Py P, B,. Yor a given n, P, and P, are
known beforehand and, independent of the inputs. These can therefore be hardwired. Each
term in the summation (i.e. P, Pp * Bp) requires two levels of multiplication and hence,
computing these terms is in TC°.

The summation of the terms to get Y can be done through I'terated Addition, which we already
know is in 7°C°. The problem is that Y could be greater than []; p;. This could happen because
each term in the summation can be at most [], p;. Therefore, 0 <Y < n*([[; p:)-

Using Iterated Subtraction, we can get y = Ymod([], p;). Basically, in parallel try out all
possible j for which Y — j[I; p; yields a number between 0 and [], p;. The number of js that
we need to try is small (at most n?). Hence, this too can be realized in 7C°.

Exercise: Show that the number of js to be tried for the Iterated Subtraction above is indeed
small.
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3.2.1 General Technique

Given n n-bit numbers, by, by, ..., by,, the product, z = []_, b;, can have at most n? bits. The
idea is to select the first n? primes {py,pa, ..., pp2}, so that [[;p; > 27 > [[,bi. {Note:
Why is this necessary?}

The procedure is to take a p € {p1,ps,...,p,2} and, do the following for each p.

1. Evaluate ([]; b;) mod(p). This requires finding b1 mod(p), b mod(p), ... b, mod(p).
2. Since, b; = b7 mod(p), set B = [[,b%.
3. Set B, = B, mod(p).

We next apply Chinese Remaindering where, the set of co-primes is {py,p2,...,p,2} and,
the set of residues is {By, By,..., B,2}. Now, since z < [[; p;, the y that we get using
Chinese Remaindering will necessarily be the z that we started off with.

For all this to work, we require each of the primes p to be small. This will ensure that the
product terms evaluated above are small. Now, we know from the Prime Number Theorem
that,

Theorem 2 [Prime Number Theorem] Let 7(z) denote the number of primes less than or

equal to x. As x increases without bound, the ratio of n(z) to 103;;33

approaches 1.

That is, the n'* prime, p, < cnlogn and, p,2 < n?. This means that each of the n? primes
can be represented using O(logn) bits.

What remains to be shown is, each of the above steps can be done efficiently (i.e. € 1TC?).

3.2.2 mod(p) € TC°
Let us take an n-bit number A. This can be represented as, A = S Ai2'. That s,
A mod(p) = " A;(2° mod(p)). This clearly can be done in TC? since,

e The computation of 2° mod(p) can be hardwired because, p is O(logn) bits and for every
7, we can directly maintain the residue in a table without too much expense. For example,
if p = 3, the table looks like,
i 01 2 3 4 5 6 7 8 9
2° 1 2 4 8 16 32 64 128 256 512
mod(3) |1 2 1 2 1 2 1 2 1 2
The residues are log p bits.

o A; €{0,1} and, finding the n product terms in the summation is a depth 1 circuit. Each
product term is necessarily O(logn) bits.
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3.1 [Iterated Multiplication € TC?

Given n n-bit numbers, by,by,...,b,, we are interested in computing the product of these

n
numbers, H b;. We want to show that Iterated Multiplication can be done in T'C°.
=1

Chinese Remaindering is used to show this result. The proof consists of picking the first n?
primes {p1,p2,..., P2} and showing that, for each prime p :-

e Computing b; mod(p) € TC".
e Computing [[", b; mod(p) € TCP.
¢ Combining the results of the previous steps and taking mod(p1 - p2 +..." p,2),is in TC°.

The proof relies heavily on the fact that the n** prime, p,,, is small, i.e. a polynomial in n.

3.2 Chinese Remaindering

Theorem 1 Given mq, my,...,my such that ged(m;,m;) = 1,V i # j, and a set of residues
a1,0a9,...,aL, i.e. for some x,

z = ay(my),x = az(ma),...,z = ap(my),
there is a unique solution to r = y mod([];, mi).

Example: lLet us consider the two primes 2 and 9 and generate the residues,
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
mod2(0 1 0 1 0 1 0 1 01 o 1 o0 1 0 1 0 1
mod9|0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
An interesting thing to note is that each column of residues is unique. The Chinese Remain-
dering Theorem is based on this observation. What is the general technique to go from the
residues to the unique number y?

Define,

M = HL] m; ; M, = ]\n/{— ; M; * M; = 1 mod(m;) and,
Y = S5 M- Mi-ai. Then, y = Y mod(M)
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Iogn/loglogn
_—=

loglogn

7

Figure 2.6: Adding loglogn n-bit numbers

n
Exact ;—

Exact )

DEMULTIPLEXER

Exact R

n

Figure 2.7: Reducing n n-bit numbers to logn n-bit numbers

15

logn



Lecture 2-3 : January 9 & 16, 1997 14

Each of the n logn bits need to be shifted one bit to the left starting from the least significant
column. But interestingly, at any bit position there are never more than logn bits to add.
This addition essentially boils down to adding logn O(n) numbers which we have already seen
belongs to ACY. We can therefore conclude that Iterated Addition € TC°.

n+loglogn-1

loglogn

n e . loglogn

dpdy

Figure 2.5: Adding n loglog n-bit numbers

2.2.5 [Iterated Multiplication

Given n n-bit numbers a; ay ... a,, we would like to find the product of these numbers.
The result could have n? bits. We could construct a binary tree of multiplication to compute
the result. And then, using the result shown in the previous section, we can conclude that
Iterated Multiplication € TC'. But, TC' is too high a class. Can we think of a better
method? We shall be cover this in the next lecture.

Rejoinder: The only known strict inclusion is AC? C TC? in the inclusions sequence

AC® ¢ TC® C NC!' C DLOG C SymLOG C NLOG C LOGCFL C AC!' C 1TC!
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Since there are loglog n bits in each column, the truth table technique can be applied success-
fully. In fact, we can afford to take lolgolgo gn columns (since, these would have log n bits and the
number of rows in the truth table would be n).

logn

]

loglogn

Figure 2.4: Adding logn n-bit numbers

We can see from Fig 2.6 that for each such block of log’lgo gn columns there are two numbers, the

sum and the carry. These are positioned such that the carry for a block fully overlaps with the
sum of the next block. The next step would be to simply add a set of 2 numbers and, this we
know can be done in AC®.

Exercise: Given log®n n-bit numbers, add them in ACY. Hint: The solution would have depth

O(k).

2.2.4 [Iterated Addition

The problem of adding log n n-bit numbers is known to be in AC?. Now, if we can show that
adding n n-bit numbers can be reduced to adding logn O(k)-bit numbers, we are in business.
In order to reduce n n-bit numbers to logn n-bit numbers, threshold gates will be required.
Assume that for every value of k, Fzact] gates are available.

Using the Fzact] gates, we can count the number of 1s in each column. For each value of £, the
output of the Kzact] gates are fed into a Multiplexer so as to generate the binary representation
of the number of 1s in the column. The result is a set of n log n-bit numbers. Fig 2.7 illustrates
the Iterated Addition process.
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then belong to ACY. Now, each unbounded fan-in gate expands to a O(logn) bounded fan-in
realization. This would imply that adding n n-bit numbers and hence, MU LTIPLICATION
belongs to NC?. We want something better.

Suppose we were to partition the n numbers into groups of three. For each group, the sum is
represented as two numbers. The first holds the @& (i.e. XOR) of the three numbers and, the
other holds the carries shifted by one bit to the left. This addition can be realized using N C°
circuits. An example of this operation is shown below.

=
—_ o
— ==
_—o O
—_ o =
—_ O
—_ O
o =
— =
o O

The first level of the above operation on n numbers leaves us with 2n/3 numbers. If we keep
repeating this, we get an addition tree of depth logs/, n where, each level would be an NC®
sub-circuit. Hence, we have an N(C! realization for the addition of n n-bit numbers. This is
illustrated in Fig 2.3. This technique is due to Offman.

We can therefore conclude that MULTIPLICATION € NC'. Can we say something more
stronger that would help us to prove one of the containments stated earlier in the lecture?

2.2.3 Adding logn n-bit numbers

Suppose we are given log n n-bit numbers to add. If we are able to show that this is in ACY,
then some progress would be made towards showing that MULTIPLICATION € TCO. 1t is
again the carry bits which are troublesome.

Suppose we look at the i*"-bits of all the logn numbers. If we add these bits, the size of the
carry would be loglogn. This would then generate n log log n-bit numbers, each shifted left by
one. We can achieve our objective if there is a clever way of adding these » numbers, which
possess a rather nice structure. Fig 2.4 shows the approach.

But firstly, can log n bits be added efficiently? A truth table for log n bits would have 2!°8" (i.e.
n) rows with loglogn output bits. This truth table is known and, more importantly, tractable.
Even if we constructed a DN F realization for each output bit, there would not be more than
n minterms and hence, gates. Fach of the loglogn bits can be realized by an AC? circuit of
depth 2 with o(n) gates.

Coming to the problem of adding n loglogn-bit numbers, a clever method is to ”swivel” the
relevant numbers about the top edge of the bounding rectangle. That is, take the diagonals and
lay them out horizontally. The lowermost diagonal becomes the uppermost line and vice-versa.
Note that, while laying them out the diagonals need to be shifted one place to the left. Fig 2.5
illustrates this technique.

Recursing on the resultant loglog n n-bit numbers will eventually lead to an O(log*n) realiza-
tion. But we want AC". The idea is to close the recursion somewhere by way of brute force.
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ci = Fcile; Ay) A CN o Vom)
keli,j)
= \/((acj/\yj) A (/\ zp Vo Yk) )
i<i keli,g)

c=1— : ﬂ
c=0 |

Figure 2.2: Another realization of ADDITION

The evaluation of ¢; requires O(n*) gates and ADDITION requires O(n?) gates on the whole.

Exercise: Can you reduce the size of ADDITION to O(n?) or O(nlogn)? Hint: Increase
the depth.

_‘ | XOR of the3 nos. |

| carries |

_‘| |2n/3 sum
i

Figure 2.3: Adding n n-bit numbers

2.2.2 MULTIPLICATION € NC'

Adding n n-bit numbers is a generalization of MU LTIPLICATION. The standard technique
of forming an ”addition” tree will require log n depth and n—1 additions. This realization would
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Zo = %o D Yo
co = o N Yo
Zi = % DY D e
¢ = (2 ANyi)V (& Vy) A cioa)

This is a rather naive method with O(n) depth! We are interested in constant depth circuits.

Suppose, we were to do the following,

pi = i Ny b=z, Vy
¢ = pi V(P Acici) =pi V(P A pic) V(B AP A cisg)
2
= Z PZ'/\PZ'_l/\...Pj+1/\p]‘
=027

We compute p; and P; at the first level. These are then combined in the next level to compute ¢;.
The z;’s are computed in the 4 level. Fig 2.1 shows an AC® implementation for ADDITION.
This shows that ADDITION € AC°.

For everyj <=1,

p. P> o F} and pj expandsto

J [N
N
N
N
N
~N

X Yj PiPi-1 - P1Pg PiPig--- P,y Pi Py b

Figure 2.1: An AC? realization of ADDITION

NOTE: It has been proven that any AC? circuit for ADDITION requires at least O(nlog*n)
size.

The carry is the stumbling block for an efficient implementation of the ADDITION circuit.
Let us trace the carry and see how it propogates. A carry starts when both the bits, z; and y;,

are 1s and continues to propogate as along as at least one of the 2 bits is 1. It dies the moment
both the bits are 0s. It will restart again when both bits are 1s.

In Fig 2.2 we can see that at a given 7, there will be a carry if at some earlier point (including
i) a carry is generated. And, from that point onwards the carry is propogated, without getting
killed, to 7. This can be formally stated as,
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2.1 On SACY, ACY, TC" and NC'

In this lecture we shall try to show the following hierarchy:-
AC® ¢ TC® C NC' C DLOG C SymLOG C NLOG C LOGCFL ... C P

We shall concentrate on the first 3 inclusions.

2.1.1 Some definitions

Definition 2 ACY (Alternating Class) is the class of Boolean Circuits of O(1) depth and poly-
nomial size (i.e. number of gates) with unbounded fan-in gates over the basis {A\,V,—}.

SACY (Semi-unbounded AC®) is the class of AC® circuits with the restriction that the gates
are semi-unbounded.

TCY (Threshold Class) has the restriction that the gates are Threshold gates (i.e. Th} for any
k). —-gates are also allowed.

Definition 3 NC' (Nick’s Class) is the class of Boolean Circuits of O(logn) depth and poly-
nomial size with bounded fan-in gates over the basis {A\,V,—}.

2.2 ACY c TC"

An A-gate corresponds to Th] and an V-gate corresponds to Th}. Hence, this inclusion is
trivial. In order to show that TC" contains circuits that are not in AC?, we require some
arithmetic.

ADDITION shall be shown to belong to the class AC®. We shall then go on to show that
MULTIPLICATION belongs to TC? and not ACP.

2.2.1 ADDITION

Given two n-bit numbers z,_12,_9...2129 and Y,_1Yn—_2 ...¥1Yo, the standard ripple carry
method for adding them is to define the sum as,
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Note: This method cannot be extended to T'h% for the simple reason that in base 3, we could
have a triple where none of the numbers differ on a single bit. For example, {122, 221,222}.
What is the general method for achieving O(logn) gates for T'h} for a fixed k?

Exercise: Give a realization for Thﬁ)gn. Is this in ACY?
- logn .
4 1
2
n
1 n

Figure 1.6: Log n gates realization for Thy
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Exercise: How does one achieve a 2n + 4n/2 + 0(n1/2) realization for Thy? Hint: Optimize
the above technique.

Exercise: How does one realize Th] with linear number of wires in constant depth? Can the
above method be generalized for Th7? What about O(logn) gates realization for Th%?

nl/2

A Xq Xy .. Xpl2
Xnl/24q| Xpli2ep s Xonl/2

U2

oG . ¢
N

Figure 1.5: Grid realization for Linear number of wires

1.2.6 A logn gates Realization

Consider the binary representation of the numbers {1,2,...,n}. O(logn) bits are required to
represent each of the numbers. Any 2 distinct numbers ¢ and j from this set necessarily differ
on some bit. Suppose we partition the set of inputs based on the value of the i** bit. We will
have log n sets of partitions. That is,

Thi(z1,22,...,2,) = \/ F7 where F7 is defined as,
1<j<logn
& :( \/ xy;) A ( \/ mi)
i€Bing(4) i€Bin1(j)
Bing(j) = {i: 5% bit of i is 0} Biny(j) = {i : j" bit of i is 1}

Each F7 requires 3 gates and there are logn of these. Number of gates is O(logn) and depth
is still O(1). The number of wires is O(nlogn).
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The recursive approach involves splitting the input into 2 halves and solving the Thg/ % on each
half. The only case for which this fails is when each half has exactly one input that is a 1.
Therefore, one needs to V each half and A the two. Fig 1.3 illustrates this approach.

The number of gates is O(n), the number of wires is O(n*) and the depth is O(logn). This
belongs to the class NC' since all the gates have bounded fan-in. This realization consumes
too much of the depth resource.

1.2.4 A Hiding Approach

Suppose one masks off a single input and Vs the remaining inputs. If the masked input is a
1 and this happens to be the sole 1 in the input, the output is a 0. If there are at least 2 1s
in the input, irrespective of which input is masked, every such V-term will be a 1. Hence, the
strategy is to hide one input at a time and V the rest of the input. And then A all the V-terms.

Xn| P

Figure 1.4: Hide 1-input method

‘Xl‘xz Xn-l‘xn‘

The above scheme is shown in Fig 1.4. O(n) gates with O(n*) wires and a constant depth
is required to realize this approach. This realization belongs to the class ACY. O(n?) wires is
rather high and we would like an O(n) wire realization.

1.2.5 A Linear Wires Realization

Suppose one arranges the inputs on a square grid of length n'/? by padding unoccupied grids
by 0s. Next, one Vs each row and column separately. If there exists two 1s in the input, either
2 rows or 2 columns will necessarily have 1s. Hence, if one does a Th% on the output of the row
and column Vs separately, one of them will succeed. Fig 1.5 illustrates the approach.

V-ing the rows and columns requires 2n wires and performing T h§'1/2 on the row and column
outputs requires O(n) using the Hiding Approach. That is, O(n) wires in total. Number of
gates is still O(n) and the depth is O(1).

L 1/2 .
A variation of the above scheme performs a Th2" "~ on the combined row and column outputs.
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is highly cumbersome (i.e. all 2" ways of partitioning). We will split the input into n — 1 pairs
of sets. That is,

Ho1}, {2, 2t} {{o, - zib {mig, -zt by o, -z b {20 )}

Fig 1.2 shows a circuit for the above approach. The number of gates is O(n), the number of
wires is O(n?) and the depth is O(1). This too belongs to the class mSACY.

Xn-l Xn

Figure 1.2: Partitioning Input Approach

1.2.3 A Recursive Approach

n

n
2 Recursive Definition of the Threshold Function

Figure 1.3: Recursive Approach
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1.2 Example - Threshold 2 Function

Let us consider a monotone function 7'A3. Given n inputs, the function evaluates to a 1 when
there are at least 2 inputs that are 1s. That is,

1, if S >2
0, otherwise

Thi(z1,29,...,2,) = {

A few realizations of T'hl are given below to highlight the resources required.

1.2.1 An Obvious Realization

Figure 1.1: A Simple Solution

An obvious way to realize the Th% function is to AND every pair of inputs. If at least two 1s
are present in the input, some A pair will fire. V-ing all the A pairs will give us our realization
of Th%. Fig 1.1 illustrates the circuit realization.

The number of gates is O(n?), number of wires is O(n?) and depth is two, i.e. O(1). This real-
ization belongs to the class mSAC® (monotone Semi-unbounded Alternating Class of constant
depth). Monotone because it does not use —-gates; semi-unbounded since it has unbounded
V-gates and bounded A-gates; and alternating since on any path from an input to the output,
the Vs and As alternate.

1.2.2 A Partitioning Approach

Suppose we partition the input into two sets. V each set and then A the outputs. This gives a 1
if and only if there are two 1s in the input that have not been put in the same set. Now, there
is no single partition that will yield the desired result. And, trying out all possible partitions
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1.1 Boolean Circuit Complexity

Definition 1 A Boolean Circuit is a directed acyclic graph (DAG) whose source vertices
are the inputs and the sink vertex w.l.o.g. is a single output vertex. The internal vertices are
each associated with a Boolean operation from the basis {V, A, }.

A Fixed Boolean Circuit takes a fixed input length. When we talk about a circuit for a function
or a language, we essentially are referring to a family of circuits {C,},>0, one for each input
length. That is, given an input z, we choose a circuit C; € {Ch}n>0 such that, |z| = i. z is
applied to C}; to evaluate the function on the given input. -

Henceforth, when we refer to a Boolean Circuit for a function or a language, we are actually
referring to the family of circuits.

1.1.1 What are the resources in this Model of Computation?

¢ Size: Number of gates in the circuit.
¢ Wires: Number of wires used in the circuit.
e Depth: Depth of the circuit.
¢ Fan-in of the gates. This can classify circuits into three different types:-
1. Bounded circuits. The fan-in of all gates in the family of circuits is < k& for some

fixed k. That is, the fan-in is independent of n.

2. Unbounded circuits. The fan-in of the gates in the circuits of the family could depend

on n.

3. Semi-unbounded circuits. The V-gates are unbounded while the A-gates are bounded.

¢ Monotone circuit. —-gates are not allowed. Any circuit that does not change its output
from a 1 to a 0 when an input changes from a 0 to a 1 is a monotone circuit. FEvery
monotone function can be realized by a monotone circuit and vice-versa.

Is a non-monotone circuit implementation of a monotone function smaller than its mono-
tone counterpart? This is not obvious, but true.






