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Abstract

These are lecture notes for an introductory course on logic aimed at graduate stu-
dents in Computer Science. The notes cover techniques and results from propositional
logic, modal logic, propositional dynamic logic and first-order logic. The notes are
based on a course taught to first year PhD students at SPIC Mathematical Institute,
Madras, during August—December, 1997.

At the moment, these notes only cover propositional logic and modal logic. Notes
on the remaining topics will be ready shortly.
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1 Propositional Logic

1.1 Syntax

We begin with a countably infinite set of atomic propositions P = {pg,p1,...} and two
logical connectives — (read as not) and V (read as or).

The set @ of formulas of propositional logic is the smallest set satisfying the following
conditions:

e Every atomic proposition p is a member of ®.
e If @ is a member of @, so is (—a).
e If o and 3 are members of @, so is (a V f3).

We shall normally omit parentheses unless we need to explicitly clarify the structure of a
formula. We follow the convention that — binds more tightly than V. For instance, —a VvV 3

stands for ((—a) V ).

Exercise 1.1 Show that ® is a countably infinite set. a

The fact that @ is the smallest set satisfying this inductive definition provides us with
the principle of structural induction.

Structural induction principle Let S be a set such that:
e Every atomic proposition p is a member of 9.
e If @ is a member of S, so is (—a).

o If @ and 3 are members of S, so is (a V f3).

Then, & C 5.

1.2 Semantics

To assign meaning to formulas, we begin by assigning meaning to the atomic propositions.
Let T denote the truth value true and L the truth value false.

e A valualion v is a function v: P — {T, L}.

We can also think of a valuation as a subset of P—if v : P — {T, L}, thenv CP = {p|
v(p) = T}. Thus, the set of all valuations is 27, the set of all subsets of P.
We extend each valuation v: P — {T, L} toamap ¢:® — {T, L} as follows:

e For p e P, o(p) = v(p).



T ifo(8) = L

1 otherwise

e For a of the form -3, f)(a) = {

e For a of the form 5V v, o(a) = { L ifo(B)=0(y) =L

T otherwise

The principle of structural induction can be used to formally argue that © 1s well-defined
(that is, 0 is indeed a function and is defined for all formulas).
Just as v can be defined as a subset of P, 0 can be defined as a subset of ®—mamely,

v=A{al|d(a)=T}

Exercise 1.2 We saw that every subset of P defines a valuation v. Does every subset of
® define an extended valuation V7?7 O

Since every valuation v gives rise to a unique extension 0, we shall always denote 0 as
q )
just v.

Derived connectives It will be convenient to introduce some additional connectives when
discussing propositional logic.

aANB = —(-aV-ph)
adDf = —-aVp
a=f = (aDP)AN(BDa)

The connective A is read as and, D as implies and = as if and only if.

Exercise 1.3 Express v(a A ), v(a D ) and v(a = 3) in terms of v(a) and v(3). O

Exercise 1.4 According to the Pigeonhole Principle, if we try to place n+1 pigeons in
n pigeonholes, then at least one pigeonhole must have two or more pigeons. For ¢ €
{1,2,...,n+1} and j € {1,2,...,n}, let the atomic proposition p;; denote that the 7*
pigeon is placed in the the ;' pigeonhole. Write down a formula expressing the Pigeonhole
Principle. What is the length of your formula as a function of n? a

Satisfiability and validity A formula « is said to be satisfiable if there is a valuation v
such that v(a) = T. We write v |= « to indicate that v(a) = T.

The formula « is said to be valid if v |= « for every valuation v. We write |= « to indicate
that « 1s valid. We also refer to valid formulas of propositional logic as tautologies.



Example 1.5 Let p be an atomic proposition. The formula p is satisfiable. The formula
p V —p is valid. The formula p A —p is not satisfiable.

The following observation connects the notions of satisfiability and validity.
Proposition 1.6 Let o be a formula. o is valid iff —a is not satisfiable.

In applications of logic to computer science, a central concern is to develop algorithms
to check for satisfiability and validity of formulas. The preceding remark shows that the two
notions are dual: an algorithm which tests validity of formulas can be converted into one for
testing satisfiability and vice versa.

In principle, testing the validity of a formula « involves checking its truth value across an
uncountable number of valuations. However, it is sufficient to look at the effect of valuations
on the atomic propositions mentioned in a.

Let us define Voc(a), the vocabulary of a, as follows:

e For p € P, Voc(p) = {p}-
o If @ = —f3, then Voc(a) = Voc(5).
e If o =V ~, then Voc(a) = Voc(3) U Voc(7).

Proposition 1.7 Let a be a formula and vy, vy be valuations. If vy and vy agree on Voc(a)
then vi(a) = vy(a).

This justifies the familiar algorithm for testing validity: build a truth-table for the propo-
sitions mentioned in « and check if all rows yield the value T.

1.3 Axiomatisations

Though we have a straightforward algorithm for testing validity of formulas in propositional
logic, such algorithms do not exist for more complicated logical systems. In particular, there
is no such algorithm for first-order logic.

However, it is still possible to effectively enumerate all the valid formulas of first-order
logic. One way of presenting such an enumeration is through an axiomatisation of the logic.
To prepare the ground for studying axiomatisations of more complex logics, we begin with
an axiomatisation for propositional logic.

Axiom System AX The axiom system AX consists of three axioms and one inference
rule.

(A1) aD>(fDa)
(A2)  (@>(8>7))>((@a>p8)>(a>7))
(A3)

)

(=82 -a) D ((=8 D a)Dp)
a, aDf

g
3



The rule MP is read as follows—from «a and o O 3, infer 3. It is important to note
that these are axiom schemes—that is, they are not actual formulas but templates which
can be instantiated into real formulas by consistently substituting concrete formulas for a,
$ and 4. For instance, if p,q € P, p D (¢ D p) is an instance of axiom (Al). An alternate
way to present such an axiomatisation is to list the axioms as concrete formulas and have
an additional inference rule to permit uniform substitution of new formulas into an existing
formula.

Derivations A derivation of a using the axiom system AX is a finite sequence of formulas

B, B, ... 3, such that:

e B, =«

e For each ¢ € {1,2,...,n}, 5 is either an instance of one of the axioms (A1l)-(A3), or
is obtained by applying the rule (MP) to formulas 3;, Bk, where j, k < i—that is,
is of the form §; D ;.

We write

AX

a thesis of the system. We will normally omit the subscript AX.

a to denote that « is derivable using the axiom system AX and say that a is

Here is an example of a derivation using our axiom system.

L (p2>((p2>p)2p)D>(p2>(pDp)D(pDp)) Instance of (A2)

2. pD>((pD>p) Dp) Instance of (A1)

3. (pD>(>2p)D(pDp) From 1 and 2 by MP

4. pD(pDp) Instance of (A1)

5. pDOp From 3 and 4 by MP
Exercise 1.8 Show that (=3 D —a) = (a D ) is a thesis of AX. a

The axiom system we have presented is called a Hilbert-style axiomatisation. There are
several other ways of presenting axiomatisations. One common alternative to Hilbert-style
systems 1s the sequent calculus notation due to Gentzen. Typically, Hilbert-style axioma-
tisations have a large number of axioms and very few inference rules, while sequent calculi
have very few axioms and a large number of inference rules. Sequent calculi are often easier
to work with when searching for derivations, but are also more complicated from a technical
point of view. We shall look at sequent calculi later, when we come to first-order logic.

Another fact worth remembering is that the axiom system AX defined here is just one
of many possible Hilbert-style axiom systems for propositional logic.

The main technical result we would like to establish is that the set of formulas derivable
using AX is precisely the set of valid formulas of propositional logic.

Theorem 1.9 For all formulas o, b a iff E a.



We break up the proof of this theorem into two parts. The first half is to show that every
thesis of AX is valid. This establishes the soundness of the axiom system,

Lemma 1.10 (Soundness) For all formulas a, if - a then = a.

Proof: If - «, then we can exhibit a derivation Sy, 33,..., 3, of . Formally, the proof
of the lemma is by induction on the length of this derivation. Since every formula in the
sequence 1, B2, ..., 3, 1s either an instance of one of the axioms or is obtained by applying
the rule (MP), it suffices to show that all the axioms define valid formulas and that (MP)
preserves validity—in other words, if a is valid and a@ D 3 is valid, then 3 is valid. This is
straightforward and we omit the details. |

The other half of Theorem 1.9 is more difficult to establish. We have to argue that every
valid formula is derivable. Formally, this would show that our axiomatisation is complete.

We follow the approach of the logician Leon Henkin and attack the problem indirectly.
Consider the contrapositive of the statement we want to prove—that is, if a formula « is not
a thesis, then it is not valid.

Consistency We write I/ a to denote that « is not a thesis. We say that « is consistent
(with respect to AX) if I/ =

Exercise 1.11
(i) Show that a V 3 is consistent iff either « is consistent or 3 is consistent.
(ii) Show that if @A 3 is consistent then both « and 3 are consistent. Is the converse true?

(iii) Suppose that F a D . Which of the following is true?

(a) If a is consistent then 3 is consistent.

(b) If 3 is consistent then « is consistent.

By Proposition 1.6 we know that « is not valid iff -« is satisfiable. Suppose we can show
the following.

Lemma 1.12 (Henkin) For all formulas 3, if 3 is consistent then [ is salisfiable.

We can then argue that our axiomatisation is complete. Consider a formula 8 which is
not derivable. It can be shown that —=—3 D 3 is a thesis. If 3 is not derivable, neither is
——3—otherwise, we can use the rule MP to derive 3 from —==3 D . Since If =(=f3), = is
consistent. By Lemma 1.12, =3 is satisfiable. Hence, by Proposition 1.6, 3 is not valid.



1.4 Maximal Consistent Sets and Completeness

To prove Lemma 1.12, we extend the notion of consistency from a single formula to sets
of formulas. A finite set of formulas X = {ay,a,...,a,} is consistent if the formula
ar ANag A ... A ay, is consistent—that is, Y =(aq Aaz A...Aa,). An arbitrary set of formulas
X C @ is consistent if every finite subset of X is consistent. (Henceforth, Y Cg, X denotes
that Y is a finite subset of X.)

A mazimal consistent set (MCS) is a consistent set which cannot be extended by adding
any formulas. In other words, X C & is an MCS iff X is consistent and for each formula
a ¢ X, X U{a} is inconsistent.

Lemma 1.13 (Lindenbaum) Fuvery consistent set can be extended to an MCS.

Proof: Let X be an arbitrary consistent set. Let ag, i, as,... be an enumeration of ®.
We define an infinite sequence of sets Xg, X1, X, ... as follows.
[ ] XO = X
. X U{a;} if X; U {a;} is consistent
> 1] = .
o Fori 20, X { X; otherwise
Each set in this sequence is consistent, by construction, and Xy C X; C X, C ---. Let

Y = ;s Xi- We claim that Y is an MCS extending X. To establish this, we have to show
that Y is consistent and that it maximal.

If Y is not consistent, then there is a subset Z Cg, Y which is inconsistent. Let Z =
{B1, B9y, Bn}. We can write Z as {a;,,,,...,a; } where the indices correspond to our
enumeration of ®. Let j = max(t1,%2,...,%,). Then it is clear that Z Cgp X;41 in the
sequence Xg C X; € Xy, C .- C Y. This implies that X;;; is inconsistent, which is a
contradiction.

Having established that Y is consistent, we show that it is maximal. Suppose that Y U{3}
is consistent for some formula 8 ¢ Y. Let 8 = ¢ in our enumeration of ®. Since o; ¢ Y, o
was not added at step j+1 in our construction. This means that X; U {«;} is inconsistent.
In other words, there exists Z Cg, X; such that Z U {e;} is inconsistent. Since X; CY, we
must have Z Cg, YV as well, which contradicts the assumption that Y U {«;} is consistent.

O

Maximal consistent sets have a rich structure which we shall exploit to prove complete-
ness.

Lemma 1.14 Let X be a maximal consistent set. Then:
(i) For all formulas o, « € X iff ~a ¢ X.

(it) For all formulas o, B, aVp e X iff a € X or f € X.

We postpone the proof of these properties and first show how they lead to completeness.



Maximal consistent sets and valuations Let X be an MCS. Define the valuation vy
to be the set {p € P | p € X}—in other words, vx(p) = T iff p € X.

Proposition 1.15 Let X be an MCS. For all formulas o, vy =« iff o € X.

Proof: The proof is by induction on the structure of a.
Basis: o = p, where p € P. Then, vx |= p iff (by the definition of vx) p € X.

Induction step: There are two cases to consider—when «a is of the form =3 and when « is

of the form SV .

(a = =f) vx | —f iff (by the definition of valuations) vy (= B iff (by the induction
hypothesis) g ¢ X iff (by the properties satisfied by MCSs) =3 € X.

(a = BV7y)vx E BV~ iff (by the definition of valuations) vy = 8 or vx | v iff (by the
induction hypothesis) g € X or v € X iff (by the properties satisfied by MCSs) Vv € X.
O

Thus, every MCS X defines a canonical valuation vy which satisfies precisely those
formulas that belong to X. (Conversely, every valuation also defines an MCS in a canonical
way: given a valuation v, X, = {a | v |E a}. It is not difficult to establish that the valuation
vy, generated by X, is exactly the same as v.)

Proposition 1.15 immediately yields a proof of Henkin’s lemma.

Proof: (of Lemma 1.12)

Let a be a consistent formula. By Lindenbaum’s Lemma, {a} can be extended to an MCS
X. By Proposition 1.15, vx |= a since @ € X. Thus, « is satisfiable. O

To complete our argument, we have to prove Lemma 1.14.

Proof Sketch: (of Lemma 1.14)
Let X be an MCS.

(i) For every formula a, we have to show that @ € X iff —a ¢ X.

We first show that {a,—a} Z X. For this, we need the fact that @ O ——a and
——a D « are both derivable using AX. We omit these derivations.

We know that a D a, or, equivalently, ma V « is a thesis. From this, we can derive
—=(ma V a). But =(ma V a) is just @ A =a, so we have =(a A —a) as a thesis. This
means that {a, —a} is inconsistent, which is a contradiction.

Next we show that at least one of @ and —« is in X. Suppose neither formula belongs
to X. Since X is an MCS, there must be sets B Cqn, X and C' Cg, X such that
B U {a} is inconsistent and C' U {—a} are inconsistent. Let B = {1, 32,..., 3.} and
C={v,72---ym}- Let B abbreviate the formula 81 A B2 A ... A 3, and 4 abbreviate
the formula 41 A2 A ... A v. Then, we have F =(a A B) and F —(=a A 9). Rewriting
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A in terms of V, this is equivalent to F —a V —|/(§ and F ==« V =4. From this, we can
conclude that F o D = and F —a D —4.

We now use that fact that (o D 38) D ((6 D) D ((eVé) D (BV~))) is a thesis. (Once
again, we omit the derivation). Instantiating this with o = o, § = —a, § = —|B and
v = =% we can derive (o V —a) D (—ﬁ V —=4). Since - a V —a, we get - -V —4. By
rewriting V in terms of A, we can derive ﬁ(ﬂA A#). But this implies that (BUC') Cgp X
is inconsistent, which is a contradiction.

(i1) The proof of the second part follows in a similar manner, assuming the derivability of
appropriate formulas. We omit the details.

1.5 Compactness and Strong Completeness

Often, we are not interested in absolute validity, but in restricted validity. Rather than
asking whether a formula « is always true, we ask whether « is true in all valuations which
satisfy certain properties. One way of restricting the class of valuations under consideration
is to specify a set of formulas X and only look at those valuations where X is true. If « is
true wherever the formulas from X are true, then « is a logical consequence of X.

Logical consequence Let X be a set of formulas and v a valuation. We write v = X
to denote that v |= 3 for every formula 8 € X. A formula « is a logical consequence of X,
written X = «, if for every valuation v such that v = X it is also the case that v = a.

The notion of logical consequence is central to the way we formalise mathematics. For
instance, when we study algebraic structures such as groups, we first formulate axioms which
characterise groups. Any theorem we prove about groups can be rephrased as a statement
which is a logical consequence of these axioms: in other words, the theorem is true whenever
the group axioms are also true.

As with validity, we now look at a syntactic approach to logical consequence.

Derivability Let X be a set of formulas. We say that a formula « is derivable from X,
written X F « if there exists a sequence ay, asg, ..., a, of formulas such that «, = a and for
i € {1,2,...,n}, a; is either a member of X, or an instance of one of the axioms (A1)-(A3)
of AX, or is derived from a;, ay, j, k < 1, using the inference rule MP. (Notice that unlike
axioms, we cannot use the formulas in X as templates to generate new formulas for use in
a derivation. The formulas in X are concrete formulas and must be used “as is”.)

The theorem we would like to prove is the following.

Theorem 1.16 (Strong Completeness) Let X C & and a € &. Then, X EFa iff X F a.



It is possible to prove this directly using a technique similar to the one used to prove the
soundness and completeness of AX (see Exercise 1.22). However, we will prove it indirectly
using two auxiliary results which are of independent interest—the Deduction Theorem and
the Compactness Theorem.

We begin with the Deduction Theorem, which is a statement about derivability.

Theorem 1.17 (Deduction) Let X C ® and o, € ®. Then, X U{a}F B iff X Fa D pS.

Proof: (<) Suppose that X - a D 3. Then, by the definition of derivability, X U {a}
a D [ as well. Since a € X U{a}, X U{a} F a. Applying MP, we get X U {a} F £.

(=) Suppose that X U{a} F 3. Then, there is a derivation 1, B, ..., B, of 3. The proof
is by induction on n.

If n = 1, then 3 is either an instance of an axiom or a member of X U {a}. If 3 is an
instance of an axiom, then X F 3 as well. Further, from axiom (A1), X F 8 D (a D f).
Applying MP, we get X F a D 3.

If 3 € X, there are two cases to consider. If 3 € X \ {a}, then X F 3. Once again
we have X = 3 D (o D ) and hence X F o D . On the other hand, if 5 = «, we have
X F a D a from the fact that @ D « is derivable in AX.

If n > 1, we look the justification for adding 3, = 3 to the derivation. If 3, is an instance
of an axiom or a member of X U {a}, we can use the same argument as in the base case to
show X F a D .

Oun the other hand, if 3, was derived using MP, there exist 3; and 3;, with ¢, < n such
that ; is of the form 3; D 3,. By axiom (A2), X F (e« D (3 D 5.)) D ((a D Bi) D (a D
$,)). By the induction hypothesis, we know that X F a D (8 D f,) and X F a D f.
Applying MP twice, we get X F a D f,.

O

The Deduction Theorem reflects a method of proof which is common in mathematics—
proving that property x implies property y is equivalent to assuming z and inferring y.

The second step in proving Strong Completeness is the Compactness Theorem, which is
a statement about logical consequence. To prove this we need the following lemma about
trees, due to Konig.

Lemma 1.18 (Konig) Let T be a finitely branching tree—that is, every node has a finite
number of children (though this number may be unbounded). If T has infinitely many nodes,
then T has an infinite path.

Proof: Let T be a finitely branching tree with infinitely many nodes. Call a node z in T
bad if the subtree rooted at = has infinitely many nodes. Clearly, if a node x is bad, at least
one of its children must be bad: x has only finitely many children and if all of them were
good, the subtree rooted at x would be finite.

We now construct an infinite path xgxyzo... in T. Since T has an infinite number of
nodes, the root of T'is a bad node. Let x¢ be the root of T'. It has at least one bad successor.
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Figure 1: The tree T in the proof of Lemma 1.20

Pick one of the bad successors of z¢ and designate it z1. Pick one of the bad successors of
z1 and designate it z, and so on. O

Theorem 1.19 (Compactness) Let X C & and a € ®. Then X | «a iff there exists
Y Con X, V | a.

We shall first prove the following related result. Let X be a set of formulas. We say that
X is satisfiable if there exists a valuation v such that v = X.

Lemma 1.20 (Finite satisfiability) Let X C ®. Then, X is satisfiable iff every Y Cgn X
is satisfiable.

Proof: (=) Suppose X is satisfiable. Then, there is a valuation v such that v | X.
Clearly, v E Y for each Y Cg,, X as well.

(<) Suppose X is not satisfiable. We have to show that there exists ¥ Cg, X which is
not satisfiable.

Assume that our set of atomic propositions P is enumerated {p;, py,...}. Let Py = () and
for s € {1,2,...}, let P; = {p1,pa,...,pi}. Fori € {1,2,...}, let ®; be the set of formulas
generated using only atomic propositions from P; and let X; = X N ®,.

We construct a tree T' whose nodes are valuations over the sets P;, ¢ € {0,1,2,...}. More
formally, the set of nodes is given by {v | 32 € {0,1,2,...}. v: P; — {T,L}}. The root of
T is the unique function § — {T, L}.

The relation between nodes is given as follows. Let v : P; — {T,L}. Then v has two
children o', v"” : P;y1 — {T, L}, where v’ extends v to P;41 by setting piy1 to T and v”
extends v to Piyq by setting p;11 to L. More formally, for each p € P;, v'(p) = v"(p) = v(p)
and v'(piy1) = T and v"(p;41) = L. (See Figure 1).

Observe that T is a complete infinite binary tree. The nodes at level 7 of the tree consist
of all possible valuations over P;—there are precisely 2¢ such valuations for each 7. Notice
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that if v; at level j is an ancestor of v; at level ¢ then v; agrees with v; on the atomic
propositions in P;.

The infinite paths in 7" are in 1-1 correspondence with valuations over P. lLet 7 =
voU1Vg ... be an infinite path in the tree. The valuation v, : P — {T,L} is given by
pi — vi(p;) for ¢ € {1,2,...}. Conversely, given a valuation v : P — {T, L}, we can define
a unique path m, = vgviv,... by setting vy to be the root of T and v; : P; — {T, L} to be
the restriction of v to P,—that is, for all p € P;, v;(p) = v(p). It is easy to verify that these
two maps are inverses of each other.

Let us call a node v in T bad if v(8) = L for some g € X. Clearly, if v is bad, then so is
every valuation in the subtree rooted at v. We prune T' by deleting all bad nodes which also
have bad ancestors. (Equivalently, along any path in 7', we retain only those nodes upto
and including the first bad node along the path.) It is not difficult to verify that the set of
nodes which remains forms a subtree T" of T' all of whose leaf nodes are bad and all of whose
non-leaf nodes are not bad.

We claim that 7" has only a finite number of nodes. Assuming that this is true, let
{v1,v9,...,0n} be the leaf nodes of T". Since each v; is bad, there is a corresponding formula
Bi € X such that v;(8;)) = L. We claim that {3, 0s,...,08m} Can X is not satisfiable.
Consider any valuation v. The corresponding path v, must pass through one of the nodes
in {v1,09,...,0,}, say v;. But then, v.(5;) = v;(8;) = L. Thus, v & {1, B2, .., Bm}-

To see why T" must be finite, suppose instead that it has an infinite set of nodes. Then,
by Konig’s Lemma, it contains an infinite path # = vgvyvs ... such that none of the nodes
along this path is bad. The path = is also an infinite path in 7. We know that = defines
a valuation v,. Consider any formula # € X. Then g € X; for some j € {1,2,...},
so vx(f) = vj(#) = T. Thus, v, = X, which contradicts our assumption that X is not
satisfiable. a

We can now complete our proof of compactness.

Proof: [of Theorem 1.19 (Compactness)] (<) If Y Cqn X and YV |= « then it is clear
that X | «. For, if v | X, then v | Y as well and, by the assumption that Y | o, v E «
as required.

(=) For all Z C @ and all g € ®, it is clear that Z |= g iff Z U {=/3} is not satisfiable.

Suppose X | a. Then, X U {-a} is not satisfiable. By Lemma 1.20, there is a subset
Y Chn X U {—a} such that Y is not satisfiable. Thus, (Y \ {—a}) U {—a} is not satisfiable
either, where (Y \ {—a}) Cgn X. This implies that Y \ {-a} E a. O

With the Deduction Theorem and the Compactness Theorem behind us, we can prove
Strong Completeness.

Proof: [Theorem 1.16 (Strong Completeness)]

To show that X F « implies X | a is routine. Conversely, suppose that X = «a. By
compactness, there is a finite subset Y Cg, X such that YV = a. Let Y = {31, 52,...,Bm}-
It is then easy to see that 51(D (2(D -+ (8m D @)---) is valid. Hence, by the completeness
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theorem for propositional logic, F 51(D (82(D -+ (8m D «@)---). Applying the Deduction
Theorem m times we get {51, Ba,...,B3n} F a. Since {B1,5q,...,8n} C X, it follows that
XF o O

Observe that we could alternatively derive compactness from strong completeness. If
X E a then, by strong completeness, X F a. We let Y Cg, X be the subset of formulas
actually used in the derivation of a. Thus, ¥ F « as well. By the other half of strong
completeness, Y = a.

We conclude our discussion of propositional logic with two exercises. The first leads to
an alternative proof of compactness which is more along the lines of the completeness proof
for propositional logic. The second exercise leads to a direct proof of strong completeness.

Exercise 1.21 (Compactness)
Let X be a set of formulas. X is said to be a finitely satisfiable set (FSS) if every Y Cgy X
is satisfiable.

Equivalently, X is an FSS if there is no finite subset {ay,as,...,a,} of X such that
(g Aaz AL A ay) is valid.

(Note that if X is an FSS we are not promised a single valuation v which satisfies every
finite subset of X. Each finite subset could be satisfied by a different valuation).

Show that:

(i) Every FSS can be extended to a maximal FSS.

(ii) If X is a maximal FSS then:

(a) For every formula o, a € X iff ma ¢ X.
(b) For all formulas o, 8, (Vv 3) € X iff (a« € X or f € X).

(iii) Every maximal FSS X generates a valuation vx such that for every formula o, vy E «

i€ X.
From these facts conclude that:

(iv) Any FSS X is simultaneously satisfiable (that is, for any FSS X, there exists vx such
that vy E X).

(v) For all X and all o, X = « iff there exists Y Cg, X such that YV = a.
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Exercise 1.22 (Strong Completeness)
We define a new notion of consistency. A set X is said to be consistent if there is no formula
a such that X F a and X F —a.

Show that:

(i) X is consistent iff every finite subset of X is consistent.

)

(ii) Every consistent set X can be extended to a maximal consistent set (MCS).

(iii) Every MCS X generates a valuation vy such that for all formulas a, vx E aiff a € X.
)

(iv) Every consistent set X is satisfiable: that is, there exists a valuation vy such that

Uvx |= X.
(v) If X E « then X U {—a} is not consistent.

(vi) Use the Deduction Theorem to show that that if X = « then X F —a D (8 A —f) for

some formula 3.

Conclude that if X E a then X F a.

2 Modal Logic

In propositional logic, a valuation is a static assignment of truth values to atomic propo-
sitions. In computer science applications, atomic propositions describe properties of the
current state of a program. It is natural to expect that the truth of an atomic proposition
varies as the state changes. Modal logic is a framework to describe such a situation.

The basic idea in modal logic is to look at a collection of possible valuations simultane-
ously. Each valuation represents a possible state of the world. Separately, we specify how
these “possible worlds” are connected to each other. We then enrich our logical language
with a way of referring to truth across possible worlds.

2.1 Syntax

As in propositional logic, we begin with a countably infinite set of atomic propositions
P = {po,p1,...} and two logical connectives — (read as not) and V (read as or). We add a
unary modality O (read as box).

The set @ of formulas of modal logic is the smallest set satisfying the following:

e Every atomic proposition p is a member of ®.

!Traditional modal logic arose out of philosophical enquiries into the nature of necessary and conditional
truth. We shall concentrate on the technical aspects of the subject and avoid all discussion of the philosophical
foundations of modal logic.
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o If @ is a member of @, so is (—a).
o If @ and f are members of @, so is (a V ).
o If @ is a member of @, so is (Da).

As before, we omit parentheses if there is no ambiguity. The derived propositional connec-
tives A, D and = are defined as before. In addition, we have a derived modality < (read

diamond) which is dual to the modality O, defined as follows: Ca o O-a.

2.2 Semantics

Frames A frame is a structure F' = (W, R), where W is a set of possible worlds and
R C W x W is the accessibility relation. If w R w', we say that w' is an R-neighbour of w.

In more familiar terms, a frame is just a directed graph over the set of nodes W. We do
not make any assumptions about the set W—mnot even the fact that it is countable.

Models A model is a pair M = (F, V) where F' = (W, R) is a frame and V : W — 27 is a
valuation.?

Recall that a propositional valuation v : P — {T, L} can also be viewed as a set v C P
consisting of those atomic propositions p such that v(p) = T. We have implicitly used
this when defining valuations in modal logic. Formally, V' is a function which assigns a
propositional valuation to each world in W—in other words, for each w € W, V(w) : P —
{T, L}. Thus, V is actually a function of the form W — (P — {T, L}), which we abbreviate
as V:W — 27,

Satisfaction The notion of truth is localised to each world in a model. We write M, w E «
to denote that « is true at the world w in the model M. The satisfaction relation is defined
inductively as follows.

M,wEp iff p€ V(w) for pe P

M,wlE-a iff M,w £«

MwlEaVpiff MiwE=aor Myw

M,w = Oa iff for each w’ € W, if w R w' then M, w' E «

Thus, M, w | O« if every world accessible from w satisfies a. Notice that if w is isolated—
that is, there is no world w’ such that w R w'—then M, w | Oa for every formula a.

Exercise 2.1 Verify that M, w | Oa iff there exists w', w R w' and M,w' = a. O

?The semantics we describe here was first formalised by Saul Kripke, so these models are often called
Kripke models in the literature.
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Satisfiability and validity As usual, we say that o is satisfiable if there exists a frame
F = (W,R) and a model M = (F,V) such that M,w | « for some w € W. The formula
a is valid, written |= a, if for every frame F' = (W, R), for every model M = (F, V) and for
every w € W, M,w | a.

Example 2.2 Here are some examples of valid formulas in modal logic.

(i) Every tautology of propositional logic is valid. Consider a tautology a and a world w
in a model M = ((W,R),V). Since the truth of a depends only on V(w), and « is

true under all propositional valuations, M, w |= a.

(ii) The formula O(a D 8) D (O D Op) is valid. Consider a model M = ((W, R), V) and
a world w € W. Suppose that M, w | O(a D 3). We must argue that M, w | Oa D
04. Let M,w | Oa. Then we must show that M,w = O3. In other words, we must
show that every R-neighbour w’ of w satisfies 5. Since we assumed M, w = O(a D f),
we know that M,w' | a O . Moreover, since M,w = Oa, M,w' = a. By the
semantics of the connective D, it follows that M, w' |= /3, as required.

(iii) Suppose that « is valid. Then, O« must also be valid. Consider any model M =
(W, R),V) and any w € W. To check that M,w |= Oa we have to verify that every
R-neighbour of w satisfies a. Since « is valid, M,w’ = «a for all w' € W. So, every
R-neighbour of w does satisfy a and M, w | Oa.

Exercise 2.3 The argument given in part (i) of Exercise 2.2 applies only to non-modal
instances of propositional tautologies—for instance, the explanation does not justify the
validity of the formula Oa V —O«. Show that all substitution instances of propositional
tautologies are valid formulas in modal logic. O

As in propositional logic, one of our central concerns in modal logic is to be able to decide
when formulas are satisfiable (or, dually, valid). Notice that unlike the truth-table based
algorithm for propositional logic, there is no obvious decision procedure for satisfiability in
modal logic. To check satisfiability of a formula «, though it suffices to look at valuations
over the vocabulary of a, we also have to specify an underlying frame. There is no a priori
bound on the size of this frame.

Later in this section we will describe a sound and complete axiomatisation for modal
logic. This will give us an effective way of enumerating all valid formulas. After that, we
will encounter a technique by which we can bound the size of the underlying frame required
to satisfy a formula a. But, we first examine an aspect of modal logic which does not have
any counterpart in propositional logic.
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2.3 Correspondence Theory

The modalities O and <& can be used to describe interesting properties of the accessibility
relation R of a frame F' = (W, R). This area of modal logic is called correspondence theory.
Let « be a formula of modal logic. With «a, we identify a class of frames C, as follows:

F = (W,R) € C, iff for every valuation V' over W, for every world w € W and
for every substitution instance 3 of a, (W, R),V),w | S.

In other words, when defining C,, we interpret a as a template, much like an axiom scheme.
Notice that for any frame F' = (W, R) which does not belong to C,, we can find a valuation
V, a world w and a substitution instance 3 of a such that (W, R),V),w [~ j.

Characterising classes of frames We say a class of frames C is characterised by the
formula a if C =C,.

We now look at some examples of frame conditions which can characterised by formulas
of modal logic.

Proposition 2.4 The class of reflexive frames is characterised by the formula Oa D a.

Proof: We first show that every reflexive frame belongs to Canys. Let M = (W, R),V)
be a model where R is reflexive. Consider any world w € W. Suppose that M, w = Oa. We
have to show that M,w = « as well. Since M, w = Oa, every R-neighbour of w satisfies a.
But R is reflexive, so w is an R-neighbour of itself. Hence, M, w [ a.

Conversely, we show that every non-reflexive frame does not belong to Coyys. Let F =
(W, R) be a frame where for some w € W, it is not the case that w R w. Choose a proposition
p and define a valuation V as follows: V(w) = 0 and V(w') = {p} for all w’ # w. Clearly,
(F,V),w = Op but (F,V),w [£ p. Hence w fails to satisfy the substitution instance Op D p
of the formula Oa D a. O

Proposition 2.5 The class of transitive frames is characterised by the formula Oa D OOa.

Proof: We first show that every transitive frame belongs to Cosooaga. Let M = (W, R), V)
be a model where R is transitive. Consider any world w € W. Suppose that M,w | Oa.
We have to show that M, w | OO« as well.

For this, we have to show that every R-neighbour w’ of w satisfies Oa. Consider any R-
neighbour w’ of w. If w’ has no R-neighbours, then it is trivially the case that M, w' = Oa.
On the other hand, if w’ has R-neighbours, then we must show that each R-neighbour of w’
satisfies a. Let w” be an R-neighbour of w’. Since w R w’ and w' R w"”, by transitivity w”
is also an R-neighbour of w. Since we assumed that M,w |= Oa, it must be the case that
M, w" |= a, as required.
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Conversely, we show that every non-transitive frame does not belong to Cosyoos. Let
F = (W, R) be a frame where for some w, w’, w"” € W, w R w" and v’ R w" but it is not the
case that that w R w”. Choose a proposition p and define a valuation V' as follows:

| {p} fw Rw®
V(w) o { 0 otherwise

Since w” is not an R-neighbour of w, V(w") = . This means that M,w' [£ Op, for w” is
an R-neighbour of w’ and M, w" [£ p. Therefore, M,w [~ OOp, since w' is an R-neighbour
of w. On the other hand, M,w = Op by the definition of V. Hence, M,w £ Op D OOp,
which is an instance of Oa D O0Oa. a

The characteristic formula for transitivity can dually be written OCa O Oa. This form
represents transitivity more intuitively—the formula says that if w R v R w” and w”
satisfies «, there exists an R-neighbour @ of w satisfying «. If R is transitive, w” is a
natural candidate for @w. Similarly, @ O $a is the dual (and more appealing) form of the
characteristic formula for reflexivity. We have used the O forms of these formulas because
they are more standard in the literature.

Proposition 2.6 The class of symmetric frames is characterised by the formula a O OOa.

Proof: We first show that every symmetric frame belongs to Coyoos. Let M = (W, R), V)
be a model where R is symmetric. Consider any world w € W. Suppose that M,w = a.
We have to show that M, w = OCa as well.

For this, we have to show that every R-neighbour w’ of w satisfies Ca. Consider any
R-neighbour w’ of w. Since R is symmetric, w is an R-neighbour of w’. We assumed that
M,w | aso M,w' = Ca, as required.

Conversely, we show that every non-symmetric frame does not belong to Cyyooa. Let
F = (W, R) be a frame where for some w,w’ € W, w R w' but it is not the case that that
w' R w. Choose a proposition p and define a valuation V as follows:

0 ifw Ruw
{p} otherwise

Vo) ={
By construction M,w' £ Op. Hence, since wRw', M,w [ OOp. On the other hand,

M, w |= p by the definition of V', so M,w £ p D OOp, which is an instance of the formula
a D O0Ca. O

We say that an accessibility relation R over W is Fuclidean if for all w,w’,w"” € W, if w R w'
and w R w” then v’ R w"” and w” R w' (see Figure 2).

Proposition 2.7 The class of Fuclidean frames is characterised by the formula Oa D O ar.
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w implies w

" "
w

Figure 2: The Euclidean condition

Proof: We first show that every Euclidean frame belongs to Conyaoa. Let M = (W, R), V)
be a model where R is Euclidean. Consider any world w € W. Suppose that M, w | <a.
We have to show that M, w = OCa as well.

Let w’ be an R-neighbour of w. We must show that M,w’ = Ca. Since M, w | <a,
there must exist w, such that w R w, and M,w, |E a. Since R is Euclidean, v’ R w, as
well, so M, w' = Ca as required.

Conversely, we show that every non-Fuclidean frame does not belong to Connooa. Let
F = (W,R) be a frame where for some w,w’,w” € W, w R w' and w R w" but one of
w' R w" and w"” R w' fails to hold. Without loss of generality, assume that it is not the case
that w"” R w'.

Choose a proposition p and define a valuation V such that V(w') = {p} and V() = 0
for all & # w'. Then, since w R w', M,w |= Op by the definition of V. On the other hand,
by construction M, w” = Cp, so M, w = OCp. So, M, w = Op D OOp, which is an instance
of Ca D OCa. O

Notice that if R is Euclidean, for all w', if there exists w such that w R w', then v’ R w'.
It is not difficult to verify that if R is reflexive and Fuclidean then R is in fact an equivalence
relation.

Exercise 2.8 What classes of frames are characterised by the following formulas?
(i) Ca D De
(i) Ca D OCa.

(iii) a D Da.

Are there natural classes of frames which cannot be characterised in modal logic? We
will see later that irreflexive frames form one such class. But first, we return to the notions
of satisfiability and validity and look for a completeness result.
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2.4 Axiomatising valid formulas

Validity revisited We said earlier that a formula « is valid if for every frame F' = (W, R),
every model M = (F,V) and every world w, M,w = «a. In light of our discussion of
correspondence theory we can refine this notion by restricting the range over which we
consider frames.

Let C be a class of frames. We say that a formula « is C-valid if for every frame F' = (W, R)
from the class C, for every model M = (F, V) and for every world w, M, w = a. We denote
the fact that « is C-valid by ¢ a.

Let F represents the class of all frames. Then, the set of F-valid formulas is the same
as the set of valid formulas according to our earlier definition. In other words, the notions
Er a and |= a are equivalent.

Dually, we say that a formula « is C-satisfiable if there is a frame F' = (W, R) in the
class C, a model M = (F,V) and a world w, such that M, w |= «. Once again, a formula is
F-satisfiable iff it is satisfiable according to our earlier definition.

Completeness for the class F

Consider the following axiom system.
Axiom System K

Axioms

(A0) All tautologies of propositional logic.
(K) B(a>p)>(Ba>0p).

Inference Rules

(vp) @020 (@) &
The axiom (AQ) is an abbreviation for any set of axioms which are sound and complete for
Propositional Logic—in particular, we could instantiate (A0) with the axioms (A1)—(A3) of
the system AX discussed in the previous section.

As usual, we say that o is a thesis of System K*, denoted by a, if we can derive o using
the axioms (A0) and (K) and the inference rules (MP) and (G). Once again, we will omit the
subscript and write F « if there is no confusion about which axiom system we are referring
to.

The result we want to establish is the following.

Theorem 2.9 For all formulas o, by « iff Er a.
As usual, one direction of the proof is easy.

Lemma 2.10 (Soundness of System K) If b o then Ex a.

3The name K is derived from Saul Kripke.
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Proof: As we observed in the previous section, it suffices to show that each axiom is F-
valid and that the inference rules preserve F-validity. This is precisely what we exhibited in
Example 2.2 and Exercise 2.3. O

Asin Propositional Logic, we use a Henkin-style argument to show that every F-valid formula
is derivable using System K.

Consistency As before, we say that a formula « is consistent with respect to System K if
He—a. A finite set of formulas {ay, ay, . .., @, } is consistent if the conjunction a; Aay A~ - Aay,
is consistent. Finally, an arbitrary set of formulas X is consistent if every finite subset of X
is consistent.

Our goal is to prove the following.

Lemma 2.11 Let o be a formula which is consistent with respect to System K. Then, « is

F-satisfiable.

As we saw in the case of Propositional Logic, this will yield as an immediate corollary
the result which we seek:

Corollary 2.12 (Completeness for System K) Let o be a formula which is F-valid.
Then, bk a.

Maximal Consistent Sets

As before, we say that a set of formulas X is a mazimal consistent sel or MCS if X is
consistent and for all @ ¢ X, X U {a} is inconsistent. As we saw earlier, by Lindenbaum’s
Lemma, every consistent set of formulas can be extended to an MCS.

We will once again use the properties of MCSs established in Lemma 1.14. In addition,
the following properties of MCSs will prove useful.

Lemma 2.13 Let X be a maximal consistent sel.
(i) If B is a substitution instance of an aziom, then € X.

(it) Ifa D> peX and a € X, then f € X.

Proof: The proof is routine and is left as an exercise. a

The canonical model

When we studied propositional logic, we saw that each maximal consistent set defines a
“propositional world”. In modal logic, we have to construct frames with many propositional
worlds. In fact, we generate a frame with «all possible worlds, with a suitable accessibility
relation.
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Canonical model The canonical frame for System K is the pair Fi = (W, Rk ) where:

e Wi ={X| X is an MCS}.
e If X and Y are MCSs, then X Rg YV iff {a|Oa € X} C Y.

The canonical model for System K is given by Mk = (Fg, Vi) where for each X € Wy,
Vk(X)=XnNTP.

Exercise 2.14 We can dually define Rx using the modality & rather than O. Verify that
X R Viff {CalaecY} CX. O

The heart of the completeness proof is the following lemma.

Lemma 2.15 For each MCS X € Wk and for each formula « € &, Mg, X E o iffa € X.

Proof: As usual, the proof is by induction on the structure of «.

Basis: If a = p € P, then Mg, X |=piff p € Vi (X) iff p € X, by the definition of V.
Induction step:

a = —f3: Then My, X = =3 iff Mg, X [£ B iff (by the induction hypothesis) g ¢ X iff (by
the fact that X is an MCS) =3 € X.

a = pBV~y Then Mg, X E BV iff Mg, X | 3 or Mg, X | ~ iff (by the induction
hypothesis) 8 € X or v € X iff (by the fact that X is an MCS) gV v € X.

« = 08: We analyse this case in two parts:

(<) Suppose that O3 € X. We have to show that My, X | 0O3. Consider any MCS YV
such that X Rx Y. Since OF € X, from the definition of Rk it follows that 3 € Y. By the
induction hypothesis Mg, Y | 3. Since the choice of Y was arbitrary, Mg, X = Of.

(=) Suppose that Mg, X |= 03. We have to show that O3 € X. Suppose that 05 ¢ X.
Then, since X is an MCS, =03 € X. We show that this leads to a contradiction.

Claim Y, = {7 | Oy € X} U {=3} is consistent.

If we assume the claim, we can extend Yy to an MCS Y. Clearly, X Rx Y. Since =g € Y,
B ¢ Y. By the induction hypothesis, Mg,Y [ . This means that My, X [= O8 which

contradicts our initial assumption that Mg, X = Of.
To complete the proof, we must verify the claim.

Proof of claim Suppose that Yy is not consistent. Then, there exists a finite
subset {v1,72,...,7n} of Yy such that vy A2 A-+- Ay, A =3 is inconsistent. Let
us denote 3 Ay A -+ Ay, by 7.

We then have the following sequence of derivations:
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F=(3 A =p) By the definition of consistency

F-yVp Tautology of propositional logic (Axiom A0)
FyDp Definition of D

FO(y > fB) Inference rule G

FOy D> 0Op Axiom K plus one application of MP

F=(0% A =0f8) Tautology of propositional logic (Axiom A0)
We can easily show that - O(y A §) = (O A 06).

In one direction, since = v A 6 D 7 1s a tautology of propositional logic, we can
use the rule G to get F O(y A é D 7). From axiom K and one application of
MP, F O(y A §) D Oy. Symmetrically, it follows that F O(y A §) D 06. So,
- 0(yAé) D (OyADY).

Conversely, v D (6 D (y A 6)) from propositional logic. By applying axiom K
and MP a couple of times, we obtain - Oy D (06 D O(y A §)), from which it
follows that - (Oy A 06) D O(y A 9).

We can extend this argument to show that - O(6; Ady A+ Ady,) = (06 A DOy A
-+ 06,) for all n.

From the last line in our derivation above, it then follows that = =(0Ov; A Oy A
-+ Oy, A=0Of). Thus the set {0y, 075y, ..., 0y,, 703} is inconsistent. But this
is a finite subset of X, which means that X is itself inconsistent, contradicting

the fact that X is an MCS.

From the preceding result, the proof of Lemma 2.11 is immediate.

Proof: (of Lemma 2.11) Let « be a formula which is consistent with respect to System K.
By Lindenbaum’s Lemma, « can be extended to a maximal consistent set X,. By the
preceding result M, X, | «, so a is F-satisfiable. a

Once we have proved Lemma 2.11, we immediately obtain a proof of completeness (Corol-
lary 2.12) using exactly the same argument as in propositional logic.

It 1s worth pointing out one important difference between the canonical model constructed
for System K and the models constructed when proving completeness for propositional logic.
In propositional logic, to satisfy a consistent formula «, we build a valuation v which depends
on a. On the other hand, the construction of the canonical model for System K is independent
of the choice of a. Thus, every consistent formula « is satisfied within the model M.

Completeness for other classes of frames

Can we axiomatise the set of C-valid formulas for a class of frames C which is properly
included in F7 To do this, we use the characteristic formulas which we looked at when
discussing correspondence theory.
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Reflexive frames

System T' is the set of axioms obtained by adding the following axiom scheme to System K.
(T) Da D«

Lemma 2.16 System T is sound and complete with respect to the class of reflexive frames.

Proof: To show that System 7T is sound with respect to reflexive frames, we only need
to verify that the new axiom (T) is sound for this class of frames—the other axioms and
rules from System K continue to be sound. The soundness of axiom (T) follows from
Proposition 2.4.

To show completeness, we must argue that every formula which is consistent with respect
to System T' can be satisfied in a model based on a reflexive frame. To establish this, we follow
the proof of completeness for System K and build a canonical model My = ((Wy, Rr), Vr)
for System T which satisfies the property described in Lemma 2.11. We just need to verify
that the resulting frame (Wp, Ry) is reflexive.

For any MCS X, we need to verify that X Ry X or, in other words, that {a | Do € X} C
X. Consider any formula Oa € X. Since Oa D « is an axiom of System T, Oa D a € X,
by Lemma 2.13 (i). From Lemma 2.13 (ii), it then follows that o € X, as required. O

Transitive frames

System 4 is the set of axioms obtained by adding the following axiom scheme to System K.
(4) Oa D 00«

Lemma 2.17 System 4 is sound and complete with respect to the class of transilive frames.

Proof: We know that the axiom (4) is sound for the class of transitive frames from Propo-
sition 2.5. This establishes the soundness of System 4.

To show completeness, we must argue that every formula which is consistent with respect
to System 4 can be satisfied in a model based on a transitive frame. Once again, we can build
a canonical model My = ((Wa, R4), V4) for System / which satisfies the property described
in Lemma 2.11. We just need to verify that the resulting frame (W, R4) is transitive.

In other words, if X, Y, 7 are MCSs such that X Ry Y and Y R, 7, we need to verify that
X Rp Z—that is, we must show that {a | Oa € X} C Z. Consider any formula Oa € X.
Since Oa D OO« is an axiom of System 4, it follows from Lemma 2.13 that OO0« € X. Since
X R, Y, it must be the case that Da € Y. Further, since Y R, 7 it must be the case that
« € Z, as required. a
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Exercise 2.18 The System B is obtained by adding the following axiom to System K.
(B) a > OCa.

Verify that System B is sound and complete with respect to symmetric frames. O

Combinations of frame conditions

By combining the characteristic formulas for different frame conditions, we obtain complete-
ness for smaller classes of frames.

Reflexive and transitive frames

The System S/ is obtained by adding the axioms (T (for reflexivity) and (4) (for transitivity)
to System K.

Lemma 2.19 System S4 is sound and complete with respect to the class of reflexive and
transitive frames.

Proof: Since System T is sound for the class of reflexive frames and System 4 1s sound
for the class of transitive frames, it follows that System 54 1s sound for the class of reflexive
and transitive frames.

To show completeness, as usual we build a canonical model Mgy = ((Wsa, Rsa), Vsa)
satisfying the property in Lemma 2.11. Using the argument in the proof of Lemma 2.16, it
follows that Rg4 is reflexive. Similarly, from the proof of Lemma 2.17 it follows that Rgy4 is
transitive. O

Equivalence relations

The System S5 is obtained by adding the following axioms to System K.

(T) CaDa
(5) Ca D 0.

We have already seen that (T) is the axiom for reflexivity, while (5) characterises Euclidean
frames.

Exercise 2.20

(i) Show that System S5 is sound and complete for the class of frames whose accessibility
relation is an equivalence relation.

(ii) Show that the axioms (4) and (B) can be derived in System S5.
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Figure 3: A pair of similar frames

2.5 Bisimulations and expressiveness

Intuitively, it is clear that models which have “similar” structure satisfy the same modal
logic formulas. For instance, if we choose the same valuation for all worlds in the two frames
shown in Figure 3, it seems evident that no formula can distinguish the resulting pair of
models.

To formalise this notion, we introduce bisimulations.

Bisimulation Let M; = ((Wy, R1), V1) and My = ((Ws, Ry), V2) be a pair of models. A

bistimulation is a relation ~  C W; x Wy satisfying the following conditions.
(i) If wy ~ wy and wy Ryw] then there exists w) such that wyRyw) and w) ~ wh,.
(i1) If wy ~ wy and wy Ryw!, then there exists w] such that w; Ryw] and w] ~ w),.
(iii) If wy ~ wy then Vi(wq) = Va(ws).

Notice that the empty relation is a trivial example of a bisimulation. Two worlds which are
related by a bisimulation satisfy exactly the same formulas.

Lemma 2.21 Let ~ be a bisimulation between My = ((Wq, Ry), Vi) and My = ((Ws, Rs), Va).
For all wy € Wi and wy € Wy, if w1 ~ wa, then for all formulas o, My, w1 E « iff
Mg, Wa |: .

Proof: As usual, the proof is by induction on the structure of «.

Basis: Suppose a = p € P. By the definition of bisimulations, we know that Vj(w;) =
Va(wy). Hence, My, wy = p iff My, w, = p.

Induction step: The propositional cases @ = = and o = [V 7 are easy, so we omit them
and directly consider the case a = 0O4.

(=) Suppose that My, w; = OF. We must show that Ms, w, = Of as well. For this, we
must argue that My, w) = 3 for each world w), such that weRyw). Since ~ is a bisimulation,
for each such w), there exists a world w] such that wy Riw] and w] ~ w). Since My, w, = Op,
it follows that M;,w] | B. Since w; ~ w), by the induction hypothesis, it follows that
M, w), |= 3. Since w), was an arbitrarily chosen Rj-neighbour of w,, we have M, w, = 0Of,
as required.

(<) Suppose that My, wy = OF. We must show that My, w; = Of as well. The argument
is symmetric to the earlier one and we omit the details.
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We can use bisimulations to show that certain classes of frames cannot be characterised
in modal logic.

Lemma 2.22 The class of irreflexive frames cannot be characterised in modal logic.

Proof: Let a be a formula that characterises the class of irreflexive frames. Consider the
pair of frames in Figure 3. Since the first frame is not irreflexive, there should be a valuation
V and an instance 8 of « such that 3 is not satisfied at w under V.

Let us define a valuation V' on the second model such that for each w;, V'(w;) = V(w).
We can clearly set up a bisimulation between the two models by relating w to each of the
worlds w;. This means that w satisfies exactly the same formulas as each of the worlds w;.
In particular, 3 is not satisfied at each w;. This is a contradiction because the second model
is irreflexive and 3 is an instance of the formula a which we claimed was a characteristic
formula for irreflexive frames. O

Exercise 2.23 We say that a frame (W, R) is “non-connected” if there are worlds w and
w’ such that it is not the case that w(RUR™")*w’. In other words, we convert (W, R) into an
undirected graph by ignoring the orientation of edges in R. The frame is “non-connected”
if there are two nodes in the resulting undirected graph which are not reachable from each
other.

Show that there is no axiom which characterises the class of “non-connected” frames. O

Antisymmetry

We have seen that irreflexivity cannot be characterised in modal logic. Another natural frame
condition which is beyond the expressive power of modal logic is antisymmetry. Recall that
a relation R on W is antisymmetric if w R w’ and w' R w imply that w = w'.

Lemma 2.24 Let a be a formula which is satisfiable over the class of reflexive and transitive
frames. Then, « s satisfiable in a model based on an reflexive, transitive and antisymmetric
frame.

Proof: Let M = ((W,R),V) be a model where R is reflexive and transitive. We describe
a technique called bulldozing, due to Krister Segerberg, for constructing a new model M =
((W, ]A%), V), where R is reflexive, transitive and antisymmetric, such that M and M satisfy
the same formulas.

Consider the frame (W, R). If R is not antisymmetric, there are two worlds w and w' in

W such that w R w’ and w' R w. The idea is to break each loop of this kind by making
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infinitely many copies of w and w’ and arranging these copies alternately in a chain. We
then verify that the new model which we construct is bisimilar to the original model.

Formally, we say that X C W is a cluster if X x X C R—in a cluster, every world can
“see” every other world.

Let C'l be the class of mazimal clusters of W—that is, X € C'l if X is cluster and for each
w¢ X, (XU{w})x(XU{w})Z R. Since R is reflexive, every singleton {w} is a cluster.
It follows that the set C'l of maximal clusters is not empty and that every world w € W
belongs to some maximal cluster in C'l. In fact, W is partitioned into maximal clusters.

For each X € C'l, define Wx = X x N, Where N is the set {0,1,2,...} of natural numbers.
Thus Wx contains infinitely many copies of each world from X. For each set Wy, we define
an accessibility relation within Wyx. For this, we first fix an arbitrary total order <x on X.

For X € Cl, Rx C Wx x Wx is then defined as follows:

((w,12), (w, 7)) [ w € X and i € N}
((w, 1), (w',4)) | w,w" € X and w <x w'}
(w, ), (w', 7)) [w,w" € X and i < 7}

We then define a relation across maximal clusters based on the original accessibility
relation R:

U{ Wx x Wy) | X #Y and for some w € X and v’ € Y, w R w'}

Finally, we can define the new frame (W, f%) corresponding to (W, R).

o W= Uxecz Wx

It can be verified that R is reflexive, transitive and antisymmetric (Exercise 2.25).

Each world in W is of the form (w,2) where w € X for some maximal cluster X € Cl
and = € N. We extend (W, }AE) to a model by defining V((w,i)) = V(w) for all w € W and
1€ N

We define a relation ~ C W x W as follows:

~ = {((w,7),w) | w € W, i € N}

We claim that ~ is a bisimulation between M and M. From the definition of V, we have
V((w,z)) = V(w) for all w € W and ¢ € N, so the third condition in the definition of
bisimulations is trivially satisfied.

Suppose that (w,7) ~ w and (w,?) R (w', 7). We must show that w R w’. If w and
w' belong to the same maximal cluster X, then w R w’ because all elements in X are R-
neighbours of each other. On the other hand, if w € X and w’ € Y for distinct clusters
X and Y, it must be the case that (w,7) R’ (w’,j). This means that we have wy € X and
wy € Y such that wy R w}. Since w R wy and w] R w', from the transitivity of R it follows
that w R w'.
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Conversely, suppose that (w,7) ~ w and w R w’. We must exhibit a world (w', ) such
that (w,?) R (w', 7). If w and w' belong to the same maximal cluster X, we just choose
(w', j) such that ¢ < j. Then, by the definition of Rx, (w,7) Rx (w',7), so (w,?) R (w',7) as
well. On the other hand, if w € X and v’ € Y for distinct maximal clusters X and Y, then
(z,7) R' (y,7) for all j € N, so once again we can pick a (w', ) such that (z,?) R (y,7)-

Thus, ~ is a bisimulation between M, whose frame is a antisymmetric and transitive, and
M, whose frame is transitive. Hence, for any world w € W and any formula o, M, w = «a iff
M, (w,7) = a for all : € N. In other words, every formula which is satisfiable in the class of

transitive frames is also satisfiable in the class of antisymmetric and transitive frames. O

Exercise 2.25 Show that the relation & constructed in the proof of Lemma 2.24 is reflexive,
transitive and antisymmetric. a

Corollary 2.26 The class of antisymmetric frames cannol be characterised in modal logic.

Proof: Let a be a formula characterizing the class of antisymmetric frames. Let (W, R)
be a frame where R is reflexive and transitive but not antisymmetric. Then, there exists an
instance 3 of a and a valuation V over (W, R) such that M,w = —f for some w € W. By
Lemma 2.24, we can convert M into a model M = ((W, }%), V) where R is reflexive, transitive
and antisymmetric, such that M, @ |= =3 for some o € W. This is a contradiction, since /3
was assumed to be an instance of the formula a which characterises antisymmetric frames.

O

We have already seen that the system S4 is sound and complete for the class of reflexive,
transitive frames. This class is very close to the class of partial orders, which are ubiquitous
in computer science. The fact that antisymmetry cannot be characterised in modal logic
means that modal logic cannot distinguish between reflexive and transitive frames (often
called preorders) and reflexive, transitive and antisymmetric frames (or partial orders).

Corollary 2.27 The system S/ is sound and complele for the class of partial orders.

Proof: Since partial orders are reflexive and transitive, S4 is certainly sound for this class
of frames. We already know that every formula which is consistent with respect to S/ is
satisfiable in a preorder. The bulldozing construction described in the proof of Lemma 2.24

shows that every formula satisfiable over a preorder is also satisfiable over a partial order.
O
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2.6 Decidability: Filtrations and the finite model property

Though we have looked at sound and complete axiomatisations of different classes of frames,
we have yet to establish any results concerning decidability. The basic technique for showing
decidability is to prove that any formula which is satisfiable is in fact satisfiable in a finite
model.

Finite model property Let A be an axiom system which is sound and complete with
respect to a class of frames C. The system A has the finite model property if for all formulas
a, 74 « implies there is a model M = (F, V) based on a finite frame F' = (W, R) € C such
that for some w € W, M, w | —a.

Since A is sound and complete for the class C, this is equivalent to demanding that any
formula which 1s satisfiable in the class C is in fact satisfiable in a model based on a finite
frame from the class C.

Assume that we can effectively decide whether or not a given finite frame belongs to the
class C, we can then systematically enumerate all finite models built from the class C. As a
consequence, the finite model property allows us to enumerate the set of formulas satisfiable
within the class C. On the other hand, the completeness of the axiom system A allows us to
enumerate the set of formulas which are valid in this class of frames.

To check whether a formula « is valid, we interleave these enumerations. If « is valid,
it will be enumerated as a thesis of the system A. On the other hand, if « is not valid, its
negation ~a must be satisfiable, so ma will appear in the enumeration of formulas satisfiable
over C. Thus, the finite model property yields a decision procedure for validity (and, dually,
satisfiability).

Subformulas Let a be formula. The set of subformulas of v, denoted sf(«), is the smallest
set of formulas such that:

e a < sf(a).

If =4 € sf(a) then g € sf(a).
If BV € sf(a) then g € sf(a) and v € sf(a).
If O3 € sf(a) then 3 € sf(a).

Exercise 2.28 Show that the size of the set sf(a) is bounded by the length of a. More
formally, for a formula «, define |a|, the length of «, to be the number of symbols in a.
Show that if |a| = n then |sf(a)| < n. Give an example where [sf(a)] < |a]. a

For a set X of formulas, we write sf(X) to denote the set [,y sf(a). A set of formulas
X is said to be subformula-closed (or just sf-closed) if X = sf(X).

Let M = ((W,R),V) and M' = (W', R'),V') be a pair of models. We have already
seen that if we can set up a bisimulation ~ between M and M’, then for each pair of worlds
(w,w') € ~, the worlds w and w' satisfy the same formulas. Often, we are willing to
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settle for a weaker relationship between w and w'—we do not require them to agree on all
formulas, but only on formulas from a fixed set X. For sf-closed subsets X, this can be
achieved using filtrations.

Filtrations Let M = (W, R),V) and M’ = (W', R"),V’) be a pair of models and X an
sf-closed set of formulas. An X -filtration from M to M'is a function f : W — W' such that:

(i) For all w,w" € W, if w R w' then f(w) R f(w').

(ii) The map f is surjective.

(i) Forallpe PN X, p € V(w) iff p € V'(f(w)).
)1

f (f(w), ( ")) € R, then for each formula of the form Oa in X, if M,w |= Oa then
M,w' E «a

(iv

In a filtration, we have a weaker requirement on the inverse image of f than in a bisim-
ulation. If f(w)R'f(w'), we do not demand that w R w’. We only insist that w and w' be
“semantically” related upto the formulas in X. It is quite possible that (w,w’) ¢ R and
hence for some O3 ¢ X, M,w |= 03 while M, w' [£ 3.

Lemma 2.29 Let f be an X-filtration from M = (W, R),V) to M' = (W', R"), V") where
X is an sf-closed set of formulas. Then, for all « € X and for all w € W, M,w = «a iff
M f(w) E «a

Proof: The proof is by induction on the structure of a.

Basis If o = p € PN X, then M,w |= p iff p € V(w) iff (by the definition of X-filtrations)
p e V(f(w)) il M, f(w) = p

Induction step The propositional cases o = =8 and a = V v are easy, so we omit them
and directly consider the case a = 0O4.

(=) Suppose M, w = 0Of. To show that M’, f(w) = O, we must show that for each w’
with f(w)R'w', M',w" |= 3. Fix an arbitrary w’ such that f(w)R'w’. Since f is surjective,
there is a world w” € W such that v’ = f(w”). From the last clause in the definition
of filtrations, it follows that M,w"” |= . Since X is sf-closed, # € X. From the induction
hypothesis, we have M’, f(w") |= (8 or, in other words, M’ w' |= 3. Since w’ was an arbitrary
R'-neighbour of f(w), it follows that M’, f(w) | OB.

(<) Suppose that M’ f(w) | OB. To show that M,w = O3, we must show that for
each w' with w R w', M,w' |= 3. Fix an arbitrary w’ such that w R w'. From the first
clause in the definition of filtrations, it follows that f(w)R'f(w'). Since M’, f(w) | Of, it
must be the case that M, f(w') = 8. Since § € X, from the induction hypothesis we have
M., w'" = 3. Since w' was an arbitrary R-neighbour of w, it follows that M,w = Of. O

Recall that our goal is to establish the finite model property for a class of frames C—
whenever a formula « is satisfiable over C, then there is a model for a based on a finite frame
from the class C.
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Our strategy will be as follows: given a formula a and an arbitrary model M for «, define
an sf-closed set of formulas X, and a finite model M, such that o € X, and there is an
X, -filtration from M to M,. Lemma 2.29 then tells us that « is satisfied in M,. Since this
procedure applies uniformly to all satisfiable formulas a over the given class of frames, it
follows that this class of frames has the finite model property.

Defining X, is easy—we set X, = sf(a). To construct M,, we have to define a frame
(Wa, R,) and a valuation V, : W, — 27,

We define W, and V,, in a uniform manner for all classes of frames. To define W,,
we begin with the following equivalence relation ~, on W: w ~, w' if for each g € X,,
M,w | gifft M,w' = . In other words, w ~, w' iff the worlds w and w' satisfy exactly the
same formulas from the set X,. We use [w] represent the equivalence class of w with respect
to the relation ~—that is, [w] = {w’ | W’ ~, w}.

Let W, = {[w] | w € W}. Observe that W, is finite whenever X, is finite. Since
X, = sf(a), we know that X, is finite (recall Exercise 2.28).

Defining V, is simple: for each [w] € W,, V,([w]) = ﬂw,e[w] V(w).

Defining R, is more tricky: in general, this relation has to be defined taking into account
the class of frames under consideration. We now show how to define “suitable” R, for some
of the classes of frames for which we have already shown complete axiomatisations.

Lemma 2.30 The axiom system K has the finite model property.

Proof: Recall that system K is sound and complete for the class F of all frames. From
our discussion of the finite model property, it suffices to show that any formula satisfiable
over F 1s in fact satisfiable over a finite frame in F.

Let « be a satisfiable formula and let M = ((W, R), V) be a model for a—-that is, for
some w, € W, M,w, E a. Let X, = sf(a) and define W, and V,, as described earlier.
Define R, as follows:

R, = {[w],[w'] | For each formula 8 € X, if M,w | OB then M,w' = 3}

Let M, = ((W,, R,), Vo).

Fix the function f: W — W, such that w +— [w] for each w € W. We claim that f is an
X, -filtration from M to M,—for this, we have to verify that f satisfies properties (i)—(iv)
in the definition of filtrations.

It is clear that f is surjective (property (ii)).

To verify property (iii) we have to show that for each p € P N X, and for each w € W,
p € V(w) iff p € V,(Jw]). Since the worlds in [w] agree on all formulas in X,, it follows that
p € V(w) iff for each w' ~, w, p € V(') iff p € ﬂwfe[w] V(w') iff (by the definition of V,)
p € Vo ([w]).

Property (i) demands that (w,w’) € R implies ([w],[w']) € R,. By the definition of
R, ([w], [w']) € R, if for each 3 € X,, whenever M,w |= 083, M,w' | (3 as well. This is
immediate from the fact that (w,w’) € R.

Finally, property (iv) states that whenever ([w], [w']) € R,, for each formula Of € X,,,
if M,w =08 then M,w' |= 3. This follows directly from the definition of R,.

31



Having established that fis an X,-filtration from M to M,, it follows that M,, [w,] E a.
Thus M, is a finite model for a, as required. a

Lemma 2.31 The aziom system T has the finite model property.

Proof: Recall that system T is sound and complete for the class of reflexive frames. Let
a be a formula satisfiable at a world w, in a model M = ((W,R),V) where (W, R) is a
reflexive frame. We have to exhibit a finite model for a based on a reflexive frame.

Define X, and M, = ((W,, R.), V) as in the proof of Lemma 2.30. We have already
seen that f : w +— [w] then defines an X,-filtration from M to M,. To complete the proof
of the present lemma, it suffices to show that the frame (W,, R, ) is reflexive.

Since R is reflexive, we have (w,w) € R for each w € W. By property (i) of filtrations,
(w,w) € R implies ([w], [w]) € R,. Since f is surjective, it then follows that R, is reflexive
as well. (Notice that this argument actually establishes that any filtration from a reflexive
model M to a model M’ preserves reflexivity.) a

Lemma 2.32 The axiom system S/ has the finite model property.

Proof: Recall that S/ is sound and complete for the class of reflexive and transitive frames.
Let « be a formula satisfiable at a world w, in a model M = ((W, R),V) where (W, R) is
reflexive and transitive. We have to exhibit a finite model for « based on a reflexive and
transitive frame.

Let X, = sf(a) and define W, and V, in terms of ~, as usual. Let R, be defined as

follows:

R, = {[w], [w'] | For each formula O3 € X,. if M,w | OB then M,w' | 03.}

Let M, = ((W,, R,), Va).

As usual, we define f: W — W, by w — [w]. We have already seen that such a function
satisfies properties (ii) and (iii) in the definition of a filtration.

We have to verify that f satisfies properties (i) and (iv) with the new definition of R,.
To show property (i), we have to verify that if (w,w’) € R then ([w],[w']) € R,. Suppose
that M,w = Of. Since (W, R) is transitive, M,w = 08 D 003, so M,w = 0Of as well.
Since (w,w"), M,w' = 04. Thus ([w],[w']) € Ra.

For property (iv), we have to show that if ([w], [w']) € R, then for each formula of the
form 08 in X,, if M,w | Of, then M,w’ = 3. From the definition of R,, we know that
if M,w = 0f, then M,w" = OfF as well. Since (W, R) is reflexive, M,w’' |= 08 D 3, so
M, w'" |= 3 as required.

Having established that f is an X,-filtration from M to M,, it remains to prove that
(Wa, Rs) is a reflexive, transitive frame. Recall that (W, R) is assumed to be a reflexive and
transitive frame. We have already remarked in the proof of the previous lemma that any
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filtration from a reflexive model preserves reflexivity, so it is immediate that (W,, R,) is a
reflexive frame.

To show transitivity, suppose that ([w;],[wz]) and ([we], [ws]) belong to R,. We have
to show that ([wy],[ws]) € R, as well. This means that for each formula O in X,, we
have to show that if M,w, | Of then M,w; = OB. Suppose that M,w, | O3. Since
([w1], [w2]) € Ra, we know that M,w, = O5. Now, since ([ws], [ws]) € R,, it follows that
M, w; =083 as well. O

Exercise 2.33

(i) Recall that the axiom system B is sound and complete for the class of symmetric
frames. Show that B has the finite model property. Define R, as follows:

R, = {[w], [w'] | For each formula O8 € X,, (i) if M,w }= O3 then M,w' = f3
(ii) if M,w' = 0f then M,w = 8}

(ii) Recall that the axiom system S5 is sound and complete for the class of frames based
on equivalence relations. Show that S5 has the finite model property. Define R, as
follows:

Ro = {([w], [w'] | For each formula 08 € X,, M,w | O iff M,w' = O3}

Small model property In all the finite models we have constructed, we have defined W,
to be the set of equivalence classes generated by the relation ~,. Since the size of sf(«) is
bounded by |a], it follows that |[W,| is bounded by 2/, Thus, when we establish the finite
model property using the equivalence relation ~,, we in fact derive a bound on the size of
a finite model for a. As a result, we establish a stronger property, which we call the small
model property.

More formally, we say that a class of frames C has the small model property if there is
a function fz : N — N such that for each formula « satisfiable over the class C, there is a
model for a over C whose size is bounded by f¢(]a|). For instance, in the examples we have
seen, fe(la]) = 202l

The small model property gives us a more direct decidability argument—to check if « is
satisfiable, we just have to enumerate all models of size less than f¢(|a|). To show that this
is possible, we first observe that the number of frames in this subclass is bounded. To bound
the number of models based on this finite set of frames, notice that it suffices to consider
valuations restricted to the finite set of atomic propositions which occur in a. Thus given a
finite frame, there are only finitely many different valuations possible over that frame.
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This decision procedure has the advantage of giving us a bound on the complexity of the
decision problem. This bound is just the bound on the number of different models which
can be generated whose size is less than fc(]a]).

Exercise 2.34 In the examples we have seen (axiom systems K, T etc.) verify that the
satisfiability of a formula a can be checked in time which is doubly exponential in |a|. O

2.7 Labelled transition systems and multi-modal logic

Transition systems A (ransilion system is a pair (5, —) where S is a set of states and
— C 5 x S is a transition relation. Transition systems are a general framework to describe
computing systems. States describe configurations of the system—for instance, the contents
of the disk, memory and registers of a computer at a particular instant. The transition
relation then describes when one configuration can follow another—for instance the effect of
executing a machine instruction which affects some of the memory, register or disk locations
and leaves the rest of the configuration untouched.

It is clear that a transition system has exactly the same structure as a frame (W, R) in
modal logic. Hence, we can use modal logic to describe properties of transition systems.
This 1s one of the main reasons why modal logic is interesting to computer scientists.

Often, we are interested in a more structured representation of the configuration space of
a computing system—in particular, we not only want to record that a transition is possible
from a configuration s to a configuration s’ but we also want to keep track of the “instruction”
which caused this change of configuration. This leads us to the notion of labelled transition
systems.

Labelled transition systems A labelled transition system is a triple (5,2, —) where S
is a set of states, ¥ is a set of actions and — C S x ¥ x S is a labelled transition relation.

The underlying structure in a finite automaton is a familiar example of a labelled tran-
sition system, where the set of states is finite.

How can we reason about labelled transition systems in the framework of modal logic?
One option is to ignore the labels and consider the derived transition relation = = {(s,s’) |
Jda € ¥ : (s,a,s’) € —}. We can then reason about the frame (5, =) using the modalities
O and <&. This approach is clearly not satisfactory because we have lost all information
about the labels of actions within our logic. A more faithful translation involves the use of
multi-modal logics.

Multi-modal logics A multi-relational frame is a structure (W, Ry, R, ..., R,) where
each R;, 2 € {1,2,...,n} is a binary relation on W. A multi-relational frame can be viewed

as the superposition of n normal frames (W, Ry), (W, Ry), ..., (W, R,), all defined with

respect to the same set of worlds.
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To reason about a multi-relational frame, we define a multi-modal logic whose syntax
consists of a set P of atomic propositions, the boolean connectives = and V and a set of n
modalities O,, Oy, ..., O,.

To define the semantics of multi-modal logic, we first fix a valuation V : W — 27 as
before. We then define the satisfaction relation M, w [= a. The propositional cases are the
same as for standard modal logic. The only difference is in the semantics of the modalities.

For each 1 € {1,2,...,n}, we define
M, w | O;a iff for each w' € W, if w R; w' then M, v’ E «

Thus, the modalities {O;};c(1,2,...n) are used to “independently” reason about the relations
{Ri}ieq1,2,.,ny- We can then use the theory we have developed to describe properties of each
of these relations. For instance, the multi-relational frames where the axioms Osa O « and
O;a D O;0;« are valid correspond to the class where Rj is reflexive and R; is transitive.
We can express interdependencies between different relations using formulas which combine
these modalities. For instance, the formula o D &5, 4 indicates that a world which satisfies
« has an Rs-neighbour which in turn has an Rz-neighbour where 3 holds.

We have see how to characterise classes of frames using formulas from modal logic. We
can extend this idea in a natural way to characterise classes of multi-relational frames.

Exercise 2.35 Consider the class of multi-relational frames (W, Ry, Ry) where Ry = Rl_l.
Describe axioms to characterise this class. (Hint: The combined relation Ry U R; is a
symmetric relation on W. Work with suitable modifications of axiom (B). You may use
more than one axiom.) O

To reason about labelled transition systems in this framework, we have to massage the
structure (5, ¥, —) into a multi-relational frame. To achieve this, we define a relation —, C
S x S for each a € ¥ as follows:

—a = {(s,8) | (s5,a,8') € =}

It is then clear that the multi-relational frame (5, {—.}.ex) describes the same structure as
the original labelled transition system (5,3, —).

To reason about the structure (5, {—,}sex), we have modalities O, (read as Boz a) and
&4 (read as Diamond a) for each a € ¥. Traditionally, the modality O, is written [a] and
the modality <, is written (a).

When reasoning about labelled transition systems, the set of atomic propositions P
corresponds to properties which distinguish one configuration of the system from each other.
For instance, we could have an atomic proposition to denote that “memory location 27 is
unused” or that “the printer is busy”. In these notes, we will not go into the details of how
to model a computing system in terms of such a logic.

Assuming we have an abstract encoding of system properties in terms of atomic propo-
sitions, we can now reason about the dynamic behavior of the system. For instance, we can
assert M, s |= [c](b)a to denote that in the state s, any c-transition will lead to a state from
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where we can use a b-transition to realise the property described by a. In particular, if « is
just the constant T, this formula asserts that a b-transition is enabled after any c-transition.

Unfortunately, we still do not have the expressive power we need to make non-trivial
statements about programs. For instance, we cannot say that after a c-transition, we can
eventually reach a state where a b-transition is enabled. Or that we have reached a portion
of the state space where henceforth only a and d transitions are possible.

For this, we need to move from modal logic to dynamic logic, which is the topic of
discussion in the next section.
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