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Suggested solutions to problems

1. There are at least two straightforward solutions.

Non-recursive solution Let the original contents be (in sequence) aias . . . ap—1apap41 - - - Gp.
First, let a, “bubble” forward to the first box as follows.

e Swap contents of box p with box p—1. Contents are now aias ... apap_1apy1 - - . Gy
e Swap contents of box p—1 with box p—2. Contents are now aas . .. ayap_20p_10p41 - . . Gp.

e Swap contents of box 2 with box 1. Contents are now a,a,as ... ap—_2ap_1ap41 - - - Gp.

Similarly, move a,;1 to box 2— repeat the earlier procedure starting with box p+1
and stopping with box 2 to get ayapi1a1az...ap 20y 10542 .. . ay.

Do the same for p+2 to 3, p+3 to 4, ..., n to (n—p)+1 so that eventually we have
Aplp41 -« - Q@102 . . . Qp_1.

Recursive solution

Case 1 Let p > n/2. Swap the contents of box 1 with box p, box 2 with box p+1, ...,
box n—-—p+1 with box n to get a new  arrangement
QpQp41 - - - ApQp—p42 - - - Qp—101G02 . . . Ap—p41-

Case 2 If p < n/2, instead swap the contents of box 1 with box n — p+2, box 2 with
box n—p+3, ..., box p—1 with box n to get a new arrangement
Qp—p4+2 .- ApQpt1 - - - AppA10A2 ... 0p_1.

After the first step, in case 1 (p > n/2), recursively apply the same procedure for
boxes n — p+2,...,n with appropriate new values n’ = n — p+1 and p' = n—2p+3
so that contents a, pi2...a, 1 of the n—2p+2 boxes numbered n — p+2,...,p—1 is
interchanged with contents aias ... ap_py1 of the p—1 boxes numbered n —p+1,...,n.

Similarly, in the second case (p < n/2), recursively apply the procedure for boxes
1,...,n—p with n' = n—p+1 and p’ = n—2p+3 so that contents ap_pt2...an_op of the
n—2p+2 boxes numbered n—p+2, ..., p—1 is interchanged with contents aias . .. ap_p11
of the p—1 boxes numbered n — p+1,...,n.

2. (a) If a player has to play when the stack has 3 coins, he loses—whether he takes 1
or 2 coins, the opponent can empty the stack on the next move and thus win the
game.

If a player plays when the stack has 6 coins, the opponent can leave the stack
with 3 coins after his next move, leading to a losing position for the first player.



In general, it follows that any player who moves when the number of coins in the
stack is a multiple of 3 loses— the opponent can reduce it each time to the next
lower multiple of 3 until eventually the stack reaches exactly 3 coins, which is a
losing position.

Conversely, if the number of coins is not a multiple of 3, then the player who moves
can reduce it to a multiple of 3 and this is a losing position for the opponent.
Thus, if the number of coins in initial stack is not a multiple of 3, Player A has
a winning strategy and if the number of coins s a multiple of 3, Player B has a
winning strategy. The winning strategy in either case is to reduce the number of
coins to the next lower multiple of 3.

If there are two stacks, a losing position is one in which the difference between
the two stacks is a multiple of 3. If a player plays when the difference is a multiple
of 3, then the opponent can always restore the difference to be a multiple of 3.
Eventually, when one of the two stacks becomes empty, the invariant guarantees
that the opponent can make the number of coins in the nonempty stack a multiple
of 3, which is a losing position for first player in the single stack game (by the
first part of this question).

Therefore, Player A can always win if, in the initial arrangement, the difference
between the number of coins in the two stacks is not a multiple of 3, and Player
B can always win if the initial difference is a multiple of 3. The winning strategy
in both cases is to restore the difference to a multiple of 3 so long as both stacks
are nonempty and then switch to the winning strategy for a single stack after
one of the stacks becomes empty. (Actually, the strategy does not really change
after one stack becomes empty—when one of the stacks is empty, if the difference
between the stacks is a multiple of 3 then the size of the nonempty stack must be
a multiple of 3.)

Move the first 8 carriages to the rearranging yard and rearrange them in the
reverse order to which they would appear in the final arrangement. After rear-
ranging them, transfer these 8 carriages into siding 1. Do the same for the next
8 carriages and move them into siding 2. Now, reassemble the final train into the
correct order by merging the carriages from the two sidings, one at a time—that
is, compare the next available carriage in both sidings and pull out the one that
is to be placed next in the final arrangement.

For instance, in the example given in the question, the incoming train is arranged
as

C1C2C3C4C5CC7C8C9C10C11C12C13C14C15C16

and the outgoing train is required to be

C1C3C5C7C9C11C13C15C2C4C6C8C10C12C14C16-

The correct order for the first 8 carriages cicaoczcacscgercg in the final train is
€1C3C5C7CoC4CeCs.  We thus rearrange the carriages as cgcgeqcocrcscze; and push



them into siding 1, with ¢, as the outermost carriage. Likewise, we rearrange the
next 8 carriages as c15€14C12C10C15C13C11C9 and push them into siding 2 with cg as
the outermost carriage. We now merge these two 8 carriage trains by pulling ¢y,
c3, ¢5 and c¢7 from siding 1. At this point, the next available carriage in siding 1 is
co while the next available carriage in siding 2 is cg. Since we need ¢y before ¢y in
the final train, we switch to siding 2, pull out ¢y, ..., c;5, switch back to siding 1
and pull out ¢, ..., cg and finally go back to siding 2 and pull out ¢y, - .., c.

For n = 1, we can rearrange any train with 2! = 2 carriages with 1 siding—if
the carriages have to be reversed, push the first carriage into the siding, move the
second carriage out to the platform and hook up the first carriage before it.

Inductively, assume that with n—1 sidings, we can rearrange 2"~! carriages in
any order we want. We have to show that with n sidings at our disposal, we can
rearrange a train with 2" carriages. Observe that a train with 2" carriages can
be broken up into 2 trains with 2" ! carriages each. By our inductive assumption
for n—1, we can use sidings 1,...,n—1 to rearrange the first half of the train in
the the final order that we want and then reverse the train into siding n, thus
leaving sidings 1,...,n—1 free again. We use these n—1 sidings to generate (the
reverse of) the order that we want for the second half of the train and put it into
siding n—1. We then merge the two trains of length 2"~! from sidings n—1 and
n as described in the first part to obtain the rearrangement that we want for the
overall train of size 2".




