
Singing Tournament (SINGTOUR)

The Siruseri Singing Championship is going to start, and Lavanya wants to figure out the outcome before the
tournament even begins! Looking at past tournaments, she realizes that the judges care only about the
pitches that the singers can sing in, and so she devises a method through which she can accurately predict
the outcome of a match between any two singers.
She represents various pitches as integers and has assigned a lower limit and an upper limit for each singer,
which corresponds to their vocal range. For any singer, the lower limit will always be less than the upper limit.
If a singer has lower limit and upper limit (), it means that this particular singer can sing in all the
pitches between and , that is they can sing in the pitches { }.
The lower bounds and upper bounds of all the singers are distinct. When two singers and with bounds
(, and (,) compete against each other, wins if they can sing in every pitch that can sing in,
and some more pitches. Similarly, wins if they can sing in every pitch that can sing in, and some more
pitches. If neither of those two conditions are met, the match ends up as a draw.

 singers are competing in the tournament. Each singer competes in -1 matches, one match against each
of the other singers. The winner of a match scores 2 points, and the loser gets no points. But in case of a
draw, both the singers get 1 point each.
You are given the lower and upper bounds of all the singers. You need to output the total scores of each
of the singers at the end of the tournament.

Input

The first line contains a single integer, , which is the number of testcases. The description of each
testcase follows.
The first line of every testcase contains a single integer, , which is the number of singers.

 lines follow, the i-th of which contains two integers: and , which correspond to the lower bound
and upper bound of the i-th singer.

Output

For each testcase output a single line containing integers, the i-th of which should be score of the i-th
singer at the end of the tournament.

Constraints

All the integers (lower bounds and upper bounds) are distinct.

Subtasks

Subtask #1 (15 points):

Subtask #2 (25 points):

It is guaranteed that no match ends in a draw.

Subtask #3 (60 points): Original constraints.

Zonal Computing Olympiad 2019

Sample Input

2
3
10 20
13 18
15 19
3
10 22
13 21
15 20

Sample Output

4 1 1
4 2 0

Explanation

Testcase 1: There are three singers, with the lower bounds and upper bounds as (10, 20), (13, 18) and (15,
19).
When the first singer and second singer compete against each other in a match, we see that the second
singer can sing in the pitches {13, 14, 15, 16, 17, 18}. Whereas the first singer can sing in the pitches {10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. So, we see that the first singer can sing everything that the second
singer can, and also some other pitches. Hence the first singer wins this match, and gets 2 points. The
second singer gets no points from this match.
When the first singer and third singer compete against each other in a match, we see that the third singer
can sing in the pitches {15, 16, 17, 18, 19}. So again, we see that the first singer can sing everything that the
third singer can. Hence the first singer wins this match, and gets 2 points. The third singer gets no points
from this match.
When the second singer and third singer compete against each other in a match, we see that the second
singer can sing in the pitches {13, 14, 15, 16, 17, 18}, whereas the third singer can sing in the pitches {15,
16, 17, 18, 19}. In particular, the second singer can sing in the pitch 14, which the third singer cannot sing
in. And the third singer can sing in the pitch 19, which the second singer cannot sing in. So neither of the
two conditions are met, and hence this match ends in a draw. Both the second and third singer get 1 point
each.
Thus at the end of the tournament, the total score of first player is 2 + 2 = 4. Total score of the second player
is 0 + 1 = 1. Total score of the third player is 0 + 1 = 1. Hence the output is 4 1 1

Testcase 2: There are three singers, with the lower bounds and upper bounds as (10, 22), (13, 21) and (15,
20).
We see that the first singer wins against both second and third singers. And the second singer wins against
the third singer. So the final total scores are (2 + 2), (0 + 2), (0 + 0), which is 4 2 0. Note that this would be a
valid testcase in Subtask 2, because no match ends in a draw.

UpDown Sequences (UPDOWSEQ)

A sequence of integers () is said to be UpDown, if these inequalities hold true:

 and so on.

That is, every even-indexed element should be at least as large as its adjacent elements. And every odd-

indexed element should be at most as large as its adjacent elements. Formally, and

, for all valid positions.

A subsegment is a consecutive portion of a sequence. That is, a subsegment of () will be of

the form (), for some and .

You are given a sequence (). You can insert at most one integer anywhere in this sequence. It

could be any integer. After inserting an integer (or choosing not to), suppose you have the new sequence (

). Note that will either be +1 or . You want to maximize the length of the longest

subsegment of () which is UpDown, and output the length of that.

Input

The first line contains a single integer, , which is the number of testcases. The description of each

testcase follows.

The first line of every testcase contains a single integer, , which is the number of integers in the original

sequence.

The second line contains integers: , which forms the original sequence.

Output

For each testcase output a single line containing one integer, which should be the length of the longest

UpDown subsegment that you can get after inserting at most one integer.

Constraints

Subtasks

Subtask #1 (20 points):

Subtask #2 (10 points):

Subtask #3 (70 points): Original constraints

Sample Input

2
7
100 1 10 3 20 25 24
5
3 3 2 4 1

Sample Output

7
6

Explanation

Testcase 1: The original sequence is (100, 1, 10, 3, 20, 25, 24). Suppose you insert the element 5 between

the elements 20 and 25, you will get the new sequence (100, 1, 10, 3, 20, 5, 25, 24). The longest UpDown

subsegment of this sequence is (1, 10, 3, 20, 5, 25, 24), whose length is 7. You can check that you cannot

do any better, and hence the answer is 7.

Testcase 2: The original sequence is (3, 3, 2, 4, 1). Suppose you insert the element 4 at the end, you will

get the new sequence (3, 3, 2, 4, 1, 4). This entire sequence is UpDown, and so the longest UpDown

subsegment of this sequence is (3, 3, 2, 4, 1, 4), whose length is 6. You can check that you cannot do any

better, and hence the answer is 6.

Qualifying Cutoff: 25 marks and above (all students, no separate cutoffs for different categories)

