
ZCO 2022 Editorial and Statistics

ZCO Problem Setters

December 2021

1 Problem 1: Vacation

Abridged statement: Given a grid of 0s and 1s, and many queries for two grid
squares, find the minimum cost of a path between the two grid squares, where
the cost of the path is defined as the product of the values.

The following subtasks are available:

• Subtask 1 [5 points]: All the cells in the grid have a cost of 1.

• Subtask 2 [6 points]: For all trips, Ai = Ci and Bi = Di.

• Subtask 3 [23 points]: N  8, M  8 and Q  5.

• Subtask 4 [20 points]: Q  5

• Subtask 5 [19 points]: At most 10 cells in the grid have a cost of 0.

• Subtask 6 [10 points]: N = 1

• Subtask 7 [8 points]: N  5

• Subtask 8 [9 points]: No additional constraints.

1.1 Subtask 1: All cells in the grid have a cost of 1

For this subtask, since all cells in the grid have a cost of 1, it naturally follows
that all squares in any query will have a cost of 1. Then, all squares in any path
between two points must have a cost of 1. Now, consider the product of costs
on the path. Since all individual costs are 1, the product of all the costs must
also be 1. Therefore, the answer to all trips is 1, and you can output 1, Q times
to solve this subtask. Each query takes O(1) time to solve.

1.2 Subtask 2: For all trips, Ai = Ci and Bi = Di

For this subtask, the starting square is the same as the ending square, for all
trips. As a result, there is only one possible sequence of moves for each trip,
consisting of solely the starting or the ending square. Then, the cost of the trip

1

is the product of only that single square. If the single square has cost 0, then
the cost is 0, while if the square has cost 1, the cost is 1. Therefore, for each
trip, it is su�cient to simply check whether the single square is a 0 or a 1, and
output that value, to solve this subtask. Each query takes O(1) time to solve.

1.3 Subtask 3: N  8, M  8 and Q  5.

This subtask has no special constraints. The only change is that the values of
N , M and Q have been reduced.

Let us analyse how many paths can exist between the starting square and
the ending square on the grid. Naturally, if we choose the starting square to be
the top-left hand corner (cell (1, 1)) and the ending square to be the bottom-
right hand corner (cell (N,M)), then we can expect to have the most paths
available. Since the maximum limit for N and M is 8, our objective is to count
the number of possible paths from (1, 1) to (8, 8).

One way to think about the number of paths is to consider the move made at
each step. To get from (1, 1) to (8, 8), we will need to move to the right 7 times,
and move down 7 times, for a total of 14 moves. Out of the final sequence of 14
moves, it does not matter exactly which moves are to the right and which moves
are downwards, provided that there are exactly 7 of each move type. This means
that it is su�cient to count the number of ways to pick 7 downwards moves out
of 14 total moves, after which the remaining 7 unpicked moves will become our
rightward moves. This can be represented by

�14
7

�
, which has a value of 3432,

which is the maximum number of paths between any two queried points.
In general, let us define X = Ci � Ai and Y = Di � Bi. Then, X is the

number of downward moves required, and Y is the number of rightward moves
required. There are many ways to implement generating all paths. Perhaps the
simplest way is to use a recursive function to travel through the queried region.
This has been implemented below, and takes O(

�X+Y
X

�
) time per query.

1 // assume that grid[i][j] represents the value in the grid for all
1 <= i <= N and 1 <= j <= M

2 int best_path_cost(int posx , int posy , int c, int d) {
3 if (posx == c && posy == d) {
4 // this is our base case , we are at the end of the trip.
5 // return the cost of only this square.
6 return grid[posx][posy];
7 }
8 int best = 1; // to store our answer
9 if (posx < c) {

10 // then we can go down from here , without leaving our grid
11 // remember to never go down below c, since upward moves

are not allowed!
12 best = min(best , grid[posx][posy] * best_path_cost(posx+1,

posy , c, d));
13 }
14 if (posy < d) {
15 // then we can go right from here , without leaving our grid
16 // remember to never go right beyond d, since leftward

moves are not allowed!

2

17 best = min(best , grid[posx][posy] * best_path_cost(posx ,
posy+1, c, d));

18 }
19 return best;
20 }
21 // call best_path_cost(a, b, c, d);

A di↵erent way to implement this is to generate all numbers from 0 to
2X+Y �1, both inclusive. Then, a 1 at position i of the binary representation of
this number can represent moving downwards, and a 0 can represent moving to
the right. Since our path should have exactly X downwards moves, we should
now only consider those numbers with X set bits.

Then, for each such number, we can generate the path it would follow, and
accumulate the product along the way, and take the minimum of these products.
This has been implemented below, and takes O((N+M)2N+M) time per query:

1 // again , assume that grid[i][j] represents the value in the grid
for all 1 <= i <= N and 1 <= j <= M

2 int best_path_cost(int a, int b, int c, int d) {
3 int x = c - a; // the total number of downward moves
4 int y = d - b; // the total number of rightward moves
5 int sum = x + y; // the total number of moves
6 vector <int > valid_paths;
7 for (int i=0; i<=(1<<sum) -1; i++) {
8 // generate all numbers from 0...2^(sum) -1, both inclusive.
9 int set_bits = __builtin_popcount(i);

10 if (set_bits == x) {
11 // there are exactly x set bits. this is a valid path

description from (a, b) to (c, d).
12 valid_paths.push_back(i);
13 }
14 }
15 int best_product = 1;
16 for (auto path: valid_paths) {
17 // what is the product of the numbers on this path?
18 int product = grid[a][b]; // since the path begins at (a, b

)
19 int current_x = a;
20 int current_y = b;
21 for (int move =0; move <sum; move ++) { // for every move in

the path
22 if (path & (1 << move)) { // this checks whether the ’

move ’-th bit is set in the path
23 // since the ’move ’-th bit is set in the path , we

are now travelling down.
24 current_x ++;
25 }
26 else {
27 // or , since it’s not set , we are now travelling

right
28 current_y ++;
29 }
30 product *= grid[current_x][current_y]; // account for

the product of this square.
31 }
32 assert(current_x == c);

3

33 assert(current_y == d);
34 best_product = min(best_product , product); // and update

this with the global minimum product of all paths.
35 }
36 return best_product;
37 }
38 // call best_path_cost(a, b, c, d);

1.4 Subtask 4: Q  5

The values of N and M are no longer low, but the low value of Q remains for
this subtask. Recall that the number of paths in a trip is

�X+Y
X

�
. If all queries

were from (1, 1) to (N,M), for N = 400 and M = 500, then a total of
�399+499

399

�

paths would exist. This is approximately 2 ⇥ 10266. It should be clear that
trying all possible paths should no longer be a feasible option.

Instead, this subtask asks for further observation. From here on, we consider
the subgrid defined by the corners (A,B) and (C,D) to be the query subgrid.
This entire region is the set of squares which is on at least one path from (A,B)
to (C,D). From Subtask 1, we already know that if a grid consists of only 1s,
all possible products of costs are 1 too. The opposite question remains: what
if all the squares in the query subgrid are not 1? Then, there must be at least
one cell in the query subgrid that is 0.

Of course, if it is possible to travel between (A,B) and (C,D) while also
visiting a square with 0 cost, the cost of such a path would automatically be
zero. It remains to check whether such a construction is always possible. Let us
call (X,Y) the position of any zero in the query subgrid. Then, via the following
construction, we can always travel between (A,B) and (C,D) via (X,Y):

• (A,B) (from the starting square, move downwards)

• (A+ 1, B)

• . . .

• (X � 1, B)

• (X,B) (now, move to the right)

• (X,B + 1)

• . . .

• (X,Y � 1)

• (X,Y) (zero square)

• (X,Y + 1)

• . . .

• (X,D � 1)

4

• (X,D) (now, move down again)

• (X + 1, D)

• . . .

• (C � 1, D)

• (C,D) (and we have reached the ending square)

Then, it follows that the necessary and su�cient condition for the optimal
cost to be 0 is the existence of a 0 in the queried subgrid. This has been
implemented below, and takes O(NM) time per query:

1 // again , assume that grid[i][j] represents the value in the grid
for all 1 <= i <= N and 1 <= j <= M

2

3 int best_path_cost(int a, int b, int c, int d) {
4 for (int i=a; i<=c; i++) {
5 for (int j=b; j<=d; j++) {
6 if (grid[i][j] == 0) {
7 // there’s a zero in range! the answer is then 0.
8 return 0;
9 }

10 }
11 }
12 // there is no zero in the grid , the answer is now 1.
13 return 1;
14 }

1.5 Subtask 5: At most 10 cells in the grid have a cost of
0.

Now have a subtask where at most 10 cells have a cost of 0. Recall that our
objective is to check, for each query whether there exists a 0 in the query box.

Since there are far too many queries and the grids queried can be large, it is
no longer possible to search through each query subgrid to verify whether there
exists a 0 in the subgrid.

However, the rather low number of 0s in the entire grid is very promising. To
solve this subtask, we simply reverse the process: rather than scanning through
each square in each grid and checking if the value is 0, we check for each zero,
whether it is in the query subgrid. We can store the positions of the zeroes in the
grid, and check if they exist in the query subgrid. This has been implemented
below, and takes O(1) time per query:

1 // assume that zeroes is a vector of pairs , where each pair is the
coordinate of one of the zero positions in the grid.

2 // by the specification of this subtask , the size of zeroes is at
most 10.

3 int best_path_cost(int a, int b, int c, int d) {
4 for (auto pos: zeroes) {
5 if (a <= pos.first && pos.first <= c) {
6 if (b <= pos.second && pos.second <= d) {

5

7 // this zero is in the subgrid!
8 return 0;
9 }

10 }
11 }
12 // no zeroes in the subgrid , answer is 1.
13 return 1;
14 }

1.6 Subtask 6: N = 1

This subtask has N = 1, which means that the input is no longer a grid, but an
array. The task remains how to check whether there exists a 0 within a queried
subarray. For simplicity, we will denote L = B and R = D in this explanation,
to remain consistent with the variables used in arrays.

Approach 1: First, we will describe an approach which builds on from the
preceding subtask. Again, store a vector of all the positions which have a value
of 0. Then, sort this vector. For each query from L to R, we binary search for
the earliest item in our vector which is greater than or equal to L. Then there
are two cases:

• There is no such item greater than or equal to L. This means that there
is no 0 value on or after position L in the array, and therefore there is no
0 in the range [L,R]. Then, the answer to the query must be 1.

• There is an earliest item which is greater than or equal to item L. Let’s
call this item X. We further subdivide the analysis into two more cases:

– Either X  R, in which case X occurs in the range [L,R]. Then, we
have found a 0 in the range, and the answer to our query is 0.

– Otherwise, X > R. Then, as X is also the earliest 0 after L, there
cannot be any other zeroes between L and R. Then the answer to
the query must be 1.

Here is some code implementing this approach, which takes O(logM) time
per query:

1 // assume that zeroes is a vector of zero positions
2 int query(int l, int r) {
3 auto x = lower_bound(zeroes.begin (), zeroes.end(), l);
4 if (x == zeroes.end()) return 0;
5 if (*x > r) return 1;
6 return 0;
7 }

Approach 2: Second, we will describe an approach which builds on easily
to the full solution. Consider making a new array pf , of length M + 1 where
all indices are initially set to zero. Then, for every 0 in the input array, set
the corresponding index to 1. Finally, iterate over the indices 1 to M in this
array, and at each step, add the value of the preceding index to the value of the
current index.

6

This resulting structure is known as a prefix sum array. In particular, pf [X]
represents the number of indices i  X such that the value at position i of the
array is 0. This makes it extremely easy to answer queries about the number of
0s in a range - we simply find pf [R] to find the number of zeroes in the first R
positions, and subtract pf [L�1], which represents the number of zeroes strictly
before the Lth position. If this value of pf [R] � pf [L � 1] > 0, we know that
there must be a 0 between the two indices, and therefore the answer to our
query is 0, and otherwise the answer to our query must be 1. Here is some code
implementing this approach, which takes O(1) time per query:

1 vector <int > pf;
2

3 void construct(int arr[], int m) {
4 pf = vector(m+1, 0);
5 for (int i=1; i<=m; i++) {
6 if (arr[i] == 0) pf[i] = 1;
7 }
8 for (int i=1; i<=m; i++) {
9 pf[i] = pf[i-1] + pf[i];

10 }
11 }
12

13 int query(int l, int r) {
14 if (pf[r] - pf[l-1] > 0) return 0;
15 return 1;
16 }

1.7 Subtask 7: N  5

This subtask again presents a very low value of N . To solve this subtask, it
is su�cient to pick any method to solve Subtask 6, and then use the method
N times (once for each row) per query. If you choose to perform approach 1
multiple times, the resulting time complexity is O(N logM) per query, and if
you choose to perform approach 2 multiple times, the resulting time complexity
is O(N), per query.

1.8 Subtask 8: No additional constraints.

After solving the first 7 subtasks, there are many ways to arrive at the full
solution.

Approach 1: The most convenient way to solve this subtask is to generalise
the second approach in Subtask 6. What we did in Subtask 6 was to construct
prefix sums in one dimension, and Subtask 8 can be solved by constructing
prefix sums in two dimensions. This time, pf [X][Y] will represent the number
of 0s in the rectangle on the top left corner from (1, 1) to (X,Y). Again, we
begin by setting all entries in the pf array as 0, and setting all 0 positions in
the 2 dimensional input as 1. Then, you can use pf [X][Y] = pf [X � 1][Y] +
pf [X][Y � 1]� pf [X � 1][Y � 1] to calculate the resepctive values in the prefix
sum array. Answering a query involves checking whether pf [C][D] � pf [A �

7

1][D] � pf [C][B � 1] + pf [A � 1][B � 1] is strictly positive. If it is, then the
answer is 0, otherwise the answer is 1. This solution works in O(1) per query,
and is implemented below:

1 vector <vector <int >> pf;
2

3 void construct(vector <vector <int >> arr , int n, int m) {
4 pf = vector <vector <int >>(n+1, vector <int >(m+1));
5 for (int i=1; i<=n; i++) {
6 for (int j=1; j<=m; j++) {
7 pf[i][j] = pf[i-1][j] + pf[i][j-1] - pf[i-1][j-1];
8 if (arr[i][j] == 0) pf[i][j]++;
9 }

10 }
11 }
12

13 int query(int a, int b, int c, int d) {
14 if (pf[c][d] - pf[a-1][d] - pf[c][b-1] + pf[a-1][b-1] > 0)

return 0;
15 return 1;
16 }

A di↵erent way to construct prefix sums in two dimensions is to first con-
struct them horizontally in one dimension, and then to use the columns of the
resulting prefix sums to again construct a one dimensional prefix sums, verti-
cally.

Approach 2: Another way to solve the full problem is to build onto the ideas
from Subtask 7. Subtask 7 is rather easy to solve since we are guaranteed that
N is quite small. But in the full problem, N can be large. Notice that despite
N being large, NM is still constrained by 2 ⇥ 105. This means that for N to
be large, M must become small to compensate!

This observation motivates us to find a rather special property of these
constraints. In particular, the value of min(N,M) can be at most 447. It is
easy to see why this is true: first assume that the minimum of N and M is
not at most 447. then the minimum must be at least 448. Then, we can say
that N � 448 and M � 448. Then, NM � 448 ⇥ 448 = 200704. However,
NM  2 ⇥ 105, according to the problem statement. This is a contradiction,
and therefore the minimum of N and M must be at most 447.

Using this, we can apply the same solution to Subtask 7 to solve Subtask 8.
If N  M , then we can construct prefix sums over rows, and solve for Subtask
7. Otherwise, we can instead construct prefix sums over columns, and solve for
Subtask 7 again, but instead of iterating over rows in each query, we iterate over
columns. This solution works in O(

p
NM) per query. Alternatively, we can also

use the binary search solution in the same manner: construct zero position lists
over each column or each row, depending on which is fewer. This solution works
in O(

p
NM log (NM)) per query.

The prefix sum version of this solution is implemented below:

1 vector <vector <int >> pf;
2

3 void construct(vector <vector <int >> arr , int n, int m) {
4 pf = vector <vector <int >>(n+1, vector <int >(m+1));

8

5 for (int i=1; i<=n; i++) {
6 for (int j=1; j<=m; j++) {
7 if (arr[i][j] == 0) pf[i][j] = 1;
8 }
9 }

10 if (n <= m) {
11 // do row -wise prefix sums
12 for (int i=1; i<=n; i++) {
13 for (int j=1; j<=m; j++) {
14 pf[i][j] += pf[i][j-1];
15 }
16 }
17 }
18 else {
19 // do column -wise prefix sums
20 for (int j=1; j<=m; j++) {
21 for (int i=1; i<=n; i++) {
22 pf[i][j] += pf[i-1][j];
23 }
24 }
25 }
26 }
27

28 int query(int a, int b, int c, int d) {
29 if (n <= m) {
30 // use row -wise
31 int sum = 0;
32 for (int i=a; i<=c; i++) sum += pf[i][d] - pf[i][b-1];
33 if (sum == 0) return 1;
34 return 0;
35 }
36 else {
37 // use column wise
38 int sum = 0;
39 for (int i=b; i<=d; i++) sum += pf[c][i] - pf[a-1][i];
40 if (sum == 0) return 1;
41 return 0;
42 }
43 }

9

2 Problem 2: Messages

Abridged statement: There are M = 2N messages, each of length N . Message 0
is the original message. For all other messages, message i is the same as message
0 in columns corresponding to the ‘0’ bits of the binary representation of i, and
di↵erent from message 0 in other columns. The messages are then arbitrarily
shu✏ed. Find which message(s) could have been message 0, or that none exist.

The following subtasks are available:

• Subtask 1 [11 points]: N = 1, M = 2

• Subtask 2 [16 points]: N  7, M  128,
P

M  128

• Subtask 3 [15 points]: N  11, M  2048,
P

M  2048

• Subtask 4 [10 points]: 0  Ai,j  1 for all (i, j), K � 1

• Subtask 5 [14 points]: 0  Ai,j  1 for all (i, j)

• Subtask 6 [12 points]: K = 1

• Subtask 7 [14 points]: 0  K  1

• Subtask 8 [8 points]: No additional constraints.

2.1 Subtask 1: N = 1, M = 2

For this subtask, we notice that each message has length 1. Moreover, the binary
representation of 1 is 12. Therefore, we notice that the single fake message
must be di↵erent from the original message. Moreover, if the two messages are
di↵erent, then either one could have been the original message! So, we simply
check if the two messages are di↵erent, and output both messages if so and “0”
otherwise.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 if(a[0][0] == a[1][0]) cout <<"0\n\n"; //both messages same
4 else cout <<"2\n0 1\n"; //both messages different
5 }

2.2 Subtask 2: N  7, M  128,
P

M  128

This subtask is given for brute force solutions of cubic complexity. Let’s check
if each message could have been the original message. To do so, we attempt to
reconstruct the original list of messages before the shu✏ing. We can do this by
iterating through all i from 1 to 2N�1 and check through all the messages to see
whether there is a message that satisfies that i. This solution works in O(M3

N)
since, for each of the M possible original messages, we are reconstructing the
unshu✏ed list of M messages, and for each message in this list we check all
M � 1 messages, in O(N) each.

10

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 vector <int > ans; // vector of possible original messages
4 for(int i=0; i<m; i++){
5 //i is the original message we check
6 // message 0 in the unshuffled list already decided
7 bool yes =1; //true if i may be the original message
8 for(int j=1; j<m; j++){
9 bool exists =0;

10 //we find message j of the unshuffled list
11 for(int k=0; k<m; k++){
12 //we check if k was j in the unshuffled list
13 bool b[n];
14 //b[l]=0 if a[k][l]=a[i][l], 1 otherwise
15 for(int l=0; l<n; l++){
16 b[l] = (a[k][l]!=a[i][l]);
17 // fancy way of doing the above
18 }
19 int den =0; // convert b[] into denary
20 for(int l=0; l<n; l++) den += (1<<l)*b[l];
21 //note: 1<<l is 2^l
22 if(den==j) exists =1; //we found unshuffled j
23 }
24 if(! exists) yes=0;
25 //if unshuffled j doesn ’t exist
26 //then i cannot be the original message
27 }
28 if(yes) ans.push_back(i);
29 //i could be the original message
30 }
31 cout <<ans.size()<<’\n’; //# original messages
32 for(int i : ans) cout <<i<<’ ’; // output all
33 cout <<’\n’;
34 }

2.3 Subtask 3: N  11, M  2048,
P

M  2048

This subtask requires a quadratic complexity solution. Essentially, what we can
aim to do is optimise our previous solution. The easiest part to optimise is
the reconstruction of the unshu✏ed list. To do this, we observe that for each
message, given an original message, there is exactly one message in the unshuf-
fled list that it could correspond to. Therefore, for each of M possible original
messages, we iterate through all M � 1 other messages and for a message i, we
find which message in the unshu✏ed list i corresponds to in O(N). Then, check
if all unshu✏ed-list messages have been produced. The final time complexity is
O(M2

N).

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 vector <int > ans; // vector of possible original messages
4 for(int i=0; i<m; i++){
5 //we check if i could be the original message
6 bool exis[m]; //exis[j] true if unshuffled -j exists
7 memset(exis ,0,sizeof(exis)); //set exis to 0

11

8 for(int j=0; j<m; j++){
9 int b[n];

10 //b[k]=0 if a[j][k]=a[i][k], 1 otherwise
11 for(int k=0; k<n; k++){
12 b[k] = (a[j][k]!=a[i][k]);
13 // fancy way of doing the above
14 }
15 int den =0; // convert b[] into denary
16 for(int k=0; k<n; k++) den += (1<<k)*b[k];
17 //note: 1<<k is 2^k
18 exis[den]=1;
19 //j is message "den" in unshuffled list
20 }
21 bool yes =1;
22 //true if message i could be original message
23 for(int j=0; j<m; j++){
24 yes &= exis[j];
25 // check if all exis[j] are true
26 }
27 if(yes) ans.push_back(i);
28 }
29 cout <<ans.size()<<’\n’; //# original messages
30 for(int i : ans) cout <<i<<’ ’; // output all
31 cout <<’\n’;
32 }

2.4 Subtask 4: 0  Ai,j  1 for all i, K � 1

We may observe from the sample that in Subtask 4 all messages could be the
original message, so we only need to output all messages. Details of why this is
the case are described in the Subtask 5 solution.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 cout <<m<<’\n’;
4 for(int i=0; i<m; i++) cout <<i<<’ ’;
5 cout <<’\n’;
6 // output all messages because
7 //all messages could have been the original message
8 }

2.5 Subtask 5: 0  Ai,j  1 for all i

Let the original message be 00 . . . 00 and consider the other messages that would
be produced. We can see that, if Bi,j = 1, then Ai,j = 1, because the only value
possible other than 0 is 1, and obviously if Bi,j = 0, Ai,j = 0. In other words,
we see that in this case, Ai,j = Bi,j for all (i, j), and therefore the message i in
the unshu✏ed list will correspond to the number i in binary.

Next, let’s consider what happens with a di↵erent original message. Say the
message is 00 . . . 001. This is similar to the previous case, in that Ai,j = Bi,j

for all (i, j) except when j is the last bit. When j is the last bit, Bi,j = ¬Ai,j .
In other words, the last bit is flipped. Now, notice that the set of messages that

12

will be produced is exactly isomorphic to the set of messages that was produced
in the previous case. In fact, it can be proven that for any base message, the
set of messages produced will be exactly the same, and it is equivalent to the
numbers 0 to 2N � 1 in binary.

Remaining is the implementation. Simply create an array exis of length 2N ,
with exis[i] denoting if the number i in binary appears in the set of messages.
If exis[i] is true for all i, then the answer is all messages. Otherwise, there is
no answer.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 bool exis[m];
4 //exis[i] is true if unshuffled message i exists
5 memset(exis ,0,sizeof(exis)); //set all to 0
6 for(int i=0; i<m; i++){
7 // convert a[i] to denary
8 int den =0;
9 for(int j=0; j<n; j++) den += (1<<j)*a[i][j];

10 //note: 1<<j is 2^j
11 exis[den]=1;
12 }
13 bool all =1; //true if exis[i] is true for all i
14 for(int i=0; i<m; i++){
15 all &= exis[i];
16 }
17 if(all){
18 cout <<m<<’\n’;
19 for(int i=0; i<m; i++){
20 cout <<i<<’ ’;
21 }
22 cout <<’\n’;
23 //all bitmasks exist
24 //and so we output all messages
25 //due to mirroring
26 }
27 else{
28 cout <<"0\n\n";
29 //all bitmasks do not exist
30 //so the message list is invalid
31 }
32 }

2.6 Subtask 6: K = 1

In this subtask, we are guaranteed that there is only one original message. The
way to think of this is that we only need to find one original message. So what
would the original message be?

If we look at the process to produce the messages once again, we notice that
either Ai,j = A0,j or Ai,j 6= A0,j . Intuitively, we notice that under the latter
case, Ai,j can be one of many values, whereas under the former case, Ai,j can be
only one value. So, if we consider the values Ai,j for fixed j, it seems reasonable
to guess that A0,j will be the most common of these values. Therefore, our
algorithm is simple: for each position j, the value that appears most times is

13

the j-th position of the original message. After finding the original message,
we only need to find which message in the shu✏ed sequence corresponds to the
original message.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 int freq[n][n+1];
4 //freq[i][j] is the frequency of value j in column i
5 //note that values are in range [0,n]
6 memset(freq ,0,sizeof(freq)); //set frequencies to 0
7 for(int i=0; i<m; i++){
8 for(int j=0; j<n; j++){
9 freq[j][a[i][j]]++;

10 }
11 }
12

13 pair <int ,int > mc[n];
14 //most common value in each column
15 //mc[i]. first is the frequency
16 //mc[i]. second is the value
17 memset(mc ,-1,sizeof(mc));
18

19 for(int i=0; i<n; i++){
20 for(int j=0; j<=n; j++){
21 mc[i]=max(mc[i],{freq[i][j],j});
22 //if freq[i][j] >= mc[i].first
23 //then set mc[i].first to freq[i][j]
24 //and set mc[i]. second to j
25 }
26 }
27

28 int ans=-1; //the original message
29 for(int i=0; i<m; i++){
30 bool yes =1;
31 //true if i is the original message
32 for(int j=0; j<n; j++){
33 if(a[i][j] != mc[j]. second) yes =0;
34 //the value must be the most common
35 }
36 if(yes) ans=i;
37 }
38 cout <<"1\n"; //only one answer , as k=1
39 cout <<ans <<’\n’;
40 }

We may also observe further, by the properties of binary numbers (which
were used when solving Subtask 5), that A0,j appears exactly M

2 times in the
list of values Ai,j for fixed j. This may simplify implementation for this subtask
and help in the solving of Subtasks 7 and 8.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 int freq[n][n+1];
4 //freq[i][j] is the frequency of value j in column i
5 //note that values are in range [0,n]
6 memset(freq ,0,sizeof(freq)); //set frequencies to 0
7 for(int i=0; i<m; i++){

14

8 for(int j=0; j<n; j++){
9 freq[j][a[i][j]]++;

10 }
11 }
12

13 int ans=-1; //the original message
14 for(int i=0; i<m; i++){
15 bool yes =1;
16 //true if i is the original message
17 for(int j=0; j<n; j++){
18 if(freq[j][a[i][j]] != m/2) yes=0;
19 //for a[i][j] to be the most commmon value
20 // frequency of a[i][j] in column j
21 //must be exactly m/2
22 }
23 if(yes) ans=i;
24 }
25 cout <<"1\n"; //only one answer , as k=1
26 cout <<ans <<’\n’;
27 }

2.7 Subtask 7: 0  K  1

In this subtask, we need to find one original message if it exists, or find that the
list of messages is not valid. It seems reasonable, therefore, to build upon our
solution for Subtask 6.

Let’s say we’ve already done the “most common” check to find the original
message. Now, we need to check if this message really is the original message.
It is clear that we should use the brute force check from Subtask 3 to do this.
Since we are only checking one message, this runs in O(MN) (i.e., linear time).

Another way to characterise this method is that it is a generalisation of the
Subtask 5 solution. We observe that even in general Ai,j there is a sort of duality
between Bi,j and Ai,j . Essentially, we can reduce each message to the binary
number by setting Bi,j = 1 if Ai,j 6= A0,j , and Bi,j = 0 otherwise. Now it is
clear that this solution is essentially the same as the process which was used to
construct the messages in the first place, and so it should work.

Note: We do not know of fundamentally di↵erent solution methods to this
subtask from the one we describe above. For example, the method “check if
all messages (rather than binary reductions) are distinct, then check that each
value appears exactly M

2 times” fails on such a case:

1
3 8
0 0 0
0 0 2
0 1 0
0 0 1
2 2 0
1 0 1
1 1 0

15

1 1 1

The actual output of this testcase is 0 (i.e., the list of messages is invalid),
but most incorrect solutions will claim that message 0 was the original message.
The reason for this is that this case maintains that the most common element in
each position has frequency M

2 , and that all messages are distinct. However, the
binary reductions are not all distinct, so this message could never be produced
by the process described. “0 0 2” and “0 0 1” are equivalent, and “2 2 0” and
“1 1 0” are equivalent.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 int freq[n][n+1];
4 //freq[i][j] is the frequency of value j in column i
5 //note that values are in range [0,n]
6 memset(freq ,0,sizeof(freq)); //set frequencies to 0
7 for(int i=0; i<m; i++){
8 for(int j=0; j<n; j++){
9 freq[j][a[i][j]]++;

10 }
11 }
12

13 pair <int ,int > mc[n];
14 //most common value in each column
15 //mc[i]. first is the frequency
16 //mc[i]. second is the value
17 memset(mc ,-1,sizeof(mc));
18

19 for(int i=0; i<n; i++){
20 for(int j=0; j<=n; j++){
21 mc[i]=max(mc[i],{freq[i][j],j});
22 //if freq[i][j] >= mc[i].first
23 //then set mc[i].first to freq[i][j]
24 //and set mc[i]. second to j
25 }
26 }
27

28 int val[n];
29 for(int i=0; i<n; i++) val[i] = mc[i]. second;
30

31 //we have now found the value of each position
32 //of the original message and stored in val[]
33

34 //now we find if all bitmasks exist
35 //this is done using the exis[] method
36 // previously used in subtasks 3 and 5
37

38 bool exis[m];
39 memset(exis ,0,sizeof(exis));
40 for(int i=0; i<m; i++){
41 int b[n];
42 //b[j]=0 if a[i][j]=val[j]
43 //b[j]=1 if a[i][j]!=val[j]
44 for(int j=0; j<n; j++){
45 b[j] = (a[i][j]!= val[j]);
46 // fancy method of doing the above

16

47 }
48 int den =0; // convert b[] into denary
49 for(int j=0; j<n; j++) den += (1<<j)*b[j];
50 //note: 1<<j is 2^j
51 exis[den]=1;
52 //j is message "den" in unshuffled list
53 }
54

55 // check if all bitmasks exist
56 bool yes =1; //true if all bitmasks exist
57 for(int i=0; i<m; i++){
58 yes &= exis[i];
59 // check if exis[i] is true
60 }
61

62 if(!yes){
63 cout <<"0\n\n"; return;
64 //all bitmasks do not exist
65 //so the list is invalid
66 }
67

68 int ans=-1; //the original message
69 for(int i=0; i<m; i++){
70 bool yes =1;
71 //true if i is the original message
72 for(int j=0; j<n; j++){
73 if(a[i][j] != val[j]) yes =0;
74 //the value must be the most common
75 }
76 if(yes) ans=i;
77 }
78 cout <<"1\n"; //only one answer , as k=1
79 cout <<ans <<’\n’;
80 }

2.8 Subtask 8: No additional constraints.

For this subtask, we can once again build upon our previous solution. From our
Subtask 7 solution, we know how to find one of the possible original messages,
and also how to verify if the list of messages is valid. Now we just need to find
any other possible original messages.

One useful observation was discussed previously in Subtask 5: that A0,j

appears exactly M
2 times in the list of values Ai,j for fixed j. So, we can notice

that there may be a maximum of two values that both appear exactly M
2 times.

Now, we can see that either of these values may have been the value of the
j-th position in the original message. Similar to the “mirroring” observation of
Subtask 5, we may note that any message which has the most common value
in each position will work the same as the message that we brute-force verified.
Here is a rough proof: consider any position P with 2 candidate values A and
B such that there exists a valid original message with A and not B. Then you
can take the same original message for other values, and consider B at that
position. Now looking at the ‘di↵erence’ bitmasks, you just flipped the P -th bit

17

in each of them. So now, you still have all the bitmasks from 0 . . . 2N � 1, and
so this is also a valid solution.

1 //let a[i][j] be position j of message i (all 0-indexed)
2 void original_messages(int n, int m){
3 //Step 1: Find most common value in each position
4 //1.1: Find frequencies of each value in each column
5 int freq[n][n+5]; // frequency of value j in column i
6 //note j is in the range [0,n]
7 memset(freq ,0,sizeof(freq)); //set all to 0
8 for(int i=0; i<m; i++){
9 for(int j=0; j<n; j++){

10 freq[j][a[i][j]]++;
11 // increment the frequency of value a[i][j]
12 //in column j
13 }
14 }
15

16 //1.2: Find most common value in each position
17 //it must have frequency m/2
18 //if there are multiple , choose arbitrarily
19 int mc[n];
20 memset(mc ,-1,sizeof(mc)); //set all to -1
21 //if there is no element with frequency m/2 in pos i
22 //mc[i] = -1, and the message -list is invalid
23 for(int i=0; i<n; i++){
24 for(int j=0; j<=n; j++){
25 if(freq[i][j]==m/2) mc[i]=j;
26 }
27 }
28

29 //1.3: Check if the most common value in each position
30 //has frequency m/2
31 for(int i=0; i<n; i++){
32 if(mc[i]==-1){
33 cout <<"0\n\n"; return;
34 //the message -list is invalid
35 }
36 }
37

38 //Step 2: Check if all bitmasks exist.
39 //if so , the message -list is valid
40 //2.1: Reverse -engineer the B array from the statement.
41 int b[m][n];
42 //if a[i][j] = a[orig][j], b[i][j]=0
43 //if a[i][j] != a[orig][j], b[i][j]=1
44 for(int i=0; i<m; i++){
45 for(int j=0; j<n; j++){
46 b[i][j] = (a[i][j] != mc[j]);
47 }
48 }
49

50 //2.2: Check if B contains all binary numbers 0...(2^N) -1
51 // 2.2.1: Create exis[] array
52 bool exis[m]; //exis[i] true if message i exists
53 memset(exis ,0,sizeof(exis)); // initialise all to false
54 for(int i=0; i<m; i++){
55 // convert b[i] to denary

18

56 int den =0;
57 for(int j=0; j<n; j++){
58 den += (1<<j)*b[i][j];
59 //this adds 2^j * j-th bit
60 }
61 exis[den] = 1;
62 }
63 // 2.2.2: Ensure exis[i] true for all i
64 int yes =1; //true if all exis[i] true
65 for(int i=0; i<m; i++){
66 if(exis[i]==0) yes=0;
67 //if exis[i] is false
68 //then not all exis[i] are true
69 //and the message -list is invalid
70 }
71

72 if(yes ==0){ // message list invalid
73 cout <<"0\n\n";
74 return;
75 }
76

77 //Step 3: Find all possible original messages.
78 vector <int > ans; //list of answers
79 for(int i=0; i<m; i++){
80 bool can =1;
81 //true if message i could be original
82 //must have most common value in each pos
83 for(int j=0; j<n; j++){
84 if(freq[j][a[i][j]] != m/2) can=0;
85 // frequency of a[i][j] in column j
86 //must be exactly m/2
87 //for it to be most common
88 }
89 if(can) ans.push_back(i);
90 //add i to list of answers
91 }
92 cout <<ans.size()<<’\n’; // output # answers
93 for(int i : ans) cout <<i<<’ ’; // output all
94 cout <<’\n’;
95 }

19

3 Contest Statistics

3.1 Subtask distribution

3.1.1 Problem 1: Vacation

A total of 378 contestants submitted at least one solution to this problem.

• Subtask 1 was solved by 242 participants.

• Subtask 2 was solved by 260 participants.

• Subtask 3 was solved by 249 participants.

• Subtask 4 was solved by 241 participants.

• Subtask 5 was solved by 128 participants.

• Subtask 6 was solved by 87 participants.

• Subtask 7 was solved by 76 participants.

• Subtask 8 was solved by 60 participants.

3.1.2 Problem 2: Messages

A total of 207 contestants submitted at least one solution to this problem.

• Subtask 1 was solved by 127 participants.

• Subtask 2 was solved by 39 participants.

• Subtask 3 was solved by 29 participants.

• Subtask 4 was solved by 49 participants.

• Subtask 5 was solved by 33 participants.

• Subtask 6 was solved by 26 participants.

• Subtask 7 was solved by 4 participants.

• Subtask 8 was solved by 0 participants.

20

3.2 Score distribution

3.2.1 Problem 1: Vacation

Score Contestants at this score Contestants at or above this score
100 60 60
91 9 69
83 7 76
73 43 119
72 4 123
67 11 134
64 4 138
54 59 197
53 1 198
49 40 238
48 2 240
43 2 242
34 4 246
28 1 247
23 2 249
11 15 264
6 11 275
5 25 300
0 78 378

3.2.2 Problem 2: Messages

Score Contestants at this score Contestants at or above this score
100 0 0
92 4 4
78 7 11
66 7 18
63 3 21
54 1 22
52 2 24
51 1 25
47 7 32
42 8 40
37 2 42
35 4 46
33 4 50
27 4 54
21 6 60
11 67 127
10 2 129
0 78 207

21

3.2.3 ZCO 2022 Full Score distribution

Score Contestants at this score Contestants at or above this score
200 0 0
192 4 4
178 7 11
166 7 18
163 3 21
154 1 22
152 1 23
151 1 24
147 6 30
143 1 31
142 4 35
135 3 38
133 3 41
130 1 42
127 2 44
126 1 45
115 1 46
111 16 62
109 1 63
104 1 64
102 4 68
100 5 73
94 9 82
91 2 84
87 2 86
84 14 100
83 5 105
82 1 106
81 1 107
78 1 108
75 1 109
73 22 131
72 1 132
70 1 133
67 8 141
65 19 160
64 3 163
60 2 165
59 1 166
54 36 202
53 1 203

22

Score Contestants at this score Contestants at or above this score
49 36 239
48 1 240
44 1 241
43 2 243
34 3 246
28 1 247
23 2 249
22 2 251
21 1 252
11 12 264
6 11 275
5 25 300
0 84 384

3.3 Cuto↵s

Grade Level Male Cuto↵ Female Cuto↵
12 94 87
11 83 54
10 72 48
9 65 43
8 49 28

7 and below 34 22

23

