
Indian National Olympiad in Informatics 2024

Editorial and Results

Indian Computing Olympiad Scientific Committee

May 23, 2024

1 Monsters

Author: Paras Kasmalkar

Preparation: Paras Kasmalkar, Shreyan Ray, Soumyaditya Choudhuri

Abridged statement: There are N Monsters numbered from 1 to N , each of type Fire,

Water or Grass represented by a string A of length N . When two Monsters battle each other,

one of them wins according to the following rules:

• A Fire Monster always defeats a Grass Monster.

• A Water Monster always defeats a Fire Monster.

• A Grass Monster always defeats a Water Monster.

• In a battle between two Monsters of the same type, either one can win.

Answer Q queries of the following form: if the Monsters Lj ...Rj are standing in a line from left

to right, and repeatedly, two adjacent Monsters battle each other with the loser leaving the line,

how many Monsters can be the last remaining Monster in at least one valid sequence of events?

Constraints:

• 1 ≤ N,Q ≤ 105.

• Ai ∈ {F, W, G}

• 1 ≤ Lj ≤ Rj ≤ N

Subtasks:

Constraint for Subtasks 1-9

You only have to answer one query, and this query covers all the Monsters. In other words,

Q = 1, L1 = 1, R1 = N .

• Subtask 1 (4 points) There are only Fire Monsters.

1

• Subtask 2 (5 points) There are no Grass Monsters.

• Subtask 3 (7 points) N = 3.

• Subtask 4 (5 points) N ≤ 35. Further, there are at most 2 pairs of adjacent Monsters

who are of different types.

• Subtask 5 (11 points) N ≤ 35.

• Subtask 6 (10 points) N ≤ 80.

• Subtask 7 (10 points) N ≤ 400.

• Subtask 8 (10 points) N ≤ 1500.

• Subtask 9 (16 points) N ≤ 105.

Constraint for Subtasks 10-11

There may be multiple queries.

• Subtask 10 (6 points) There are no Grass Monsters.

• Subtask 11 (16 points) No additional constraints.

1.1 Subtask 1 (4 points): Q = 1, Only Fire Monsters

For every battle, either of the two monsters can win as they are both of Fire type; thus, in the

end, any Monster can be a winner. The answer is simply N .

1.2 Subtask 2 (5 points): Q = 1, No Grass Monsters

Water Monsters always defeat Fire Monsters, and are thus at an advantage. No Fire Monster

can win if there are any Water Monsters, while any of the Water Monsters can be a winner

similar to the first subtask.

Thus, if there are no Water Monsters, the answer is again simply N , otherwise it is the number

of Water Monsters.

1.3 Subtask 10 (6 points): No Grass Monsters

We need prefix sums to speed up the solution to subtask 2. We can use prefix sums over the

number of Water Monsters to calculate the number of Water Monsters in the range [Lj , Rj]. If

there is at least one Water Monster, we can output the number of Water Monsters. Otherwise,

every Monster in the range is a Fire Monster and any of them can win, so the answer is

Rj − Lj + 1.

2

1.4 Subtask 3 (7 points): Q = 1, N = 3

One way to solve this subtask is to manually compute the answer for each of the 33 = 27

inputs possible.

A less tedious solution involves dividing the problem into the following cases:

• A1 = A2 = A3, i.e. all Monster types are the same : Output N = 3 as any of them can

win.

• Either A1 = A2 or A1 = A3 or A2 = A3, i.e. there are 2 distinct types of Monsters:

Suppose there are only Fire and Water types, then the answer is just the number of Water

types. Similarly, in cases of Fire and Grass types, Fire types win, and in cases of Water

and Grass types, Grass types win.

• All Monsters are of distinct types: We claim that the middle Monster can never win,

while both of the other monsters can end up winning. You can try to see this through

the case A = “FWG”.

For the Fire Monster to win, Grass first beats Water and then Fire beats Grass.

For the Grass Monster to win, Water first beats Fire and then Grass beats Water.

The Water Monster cannot win, as there is no way for it to beat the Grass Monster.

In general, first the enemy (i.e. the Monster which can defeat it) of the winner is taken

out, and then the Monster ends up winning. However, for the middle Monster this is not

possible as its enemy and its enemy’s enemy are not adjacent.

1.5 Subtask 4 (5 points): Q = 1, N ≤ 35. Further, there are at most

2 pairs of adjacent Monsters who are of different types.

The solution to this is a compression idea building off the previous subtask of N = 3. Monsters

which share the same type and are adjacent can behave in essentially identical ways, and thus

if one of them can win so can the other.

Thus, we compress the string A to an array of pairs (bi, fi) where that pair represents that

there are fi continuous occurrences of the character bi in the string A. Thus reduces the

problem to N ≤ 3 (but if you don’t want to make special cases for N = 1 and 2, you can

simply append (F, 0) to the end of your array of pairs until it is of size 3).

1.6 Subtasks 5 - 9 (11 + 10 + 10 + 10 + 16 points): Q = 1, N ≤ 35

to N ≤ 105

Instead of dealing with these subtasks in a linear fashion, we will discuss various approaches

and the optimizations one can do to pass certain subtasks. Further, we only discuss about

counting the number of winning Fire Monsters. It is trivial to extend any solution to all types

of Monsters (as they all have essentially the same behavior in the sense that every type has a

type it beats and every type has a type it gets beaten by). We can find the overall answer by

adding up the answer for each type.

3

1.7 Dynamic Programming

Refer to the codes provided for exact details of the transitions.

1.7.1 Approach 1

We will use the idea of dynamic programming over ranges. Let dp(l, r, i) denote whether the

Monster numbered i can win in the range [l, r] or not. Then, the answer is simply the number

of i such that dp(1, n, i) is true.

Consider the last 2 remaining Monsters in the range [l, r], let them be x and y (x < y).

Every monster in the range [l, r] lost to exactly 1 of x or y directly or indirectly. The crucial

observation here is that there exists some index m such that for all l ≤ i ≤ m, every Monster

in the range [l,m] lost (directly or indirectly) to x and every Monster in range [m+ 1, r] lost

(directly or indirectly) to y.

We can brute force over all possible m and try all possible values of x and y. This approach

has a time complexity O(N5) as there are O(N2) ranges [l, r] and we try O(N) values each

of m, x and y. This is sufficient to pass subtask 5. Code

The first optimization we can make is instead of trying all values of x and y, we simply try all

values of x and see if we get a y we can win against. If x is of Fire type for instance, we need

to only check if there are any y which can be of Fire or Grass types. To do this fast, we will

compute the number of winning Fires and Grass beforehand in the state dp(m + 1, r, i) and

then check if either is greater than 0. Remember to also try all values of y and make it win

against x. This approach takes O(N4) and it is sufficient to pass Subtask 6. Code

1.7.2 Approach 2

Let dp(l, r, t) be true if and only if a monster of type t can win over the range [l, r]. This is

easy to calculate in O(N3) by trying all midpoints similar to Approach 1.

Now, we will compute another dynamic programming state: dp2(l, r, t) which answers the

following question: if a Monster of type t wins over the range [l, r], can it be the overall

winner? To compute this, our base case is l = 1, r = N and not the usual l = r. We compute

the DP for smaller ranges based on the DP values of bigger ranges that encompass them. To

compute this DP, we can use the values of dp(l, r, t) and try extending the current interval

by having the winner fight with a winning type of a neighboring interval. This takes O(N3)

time. Code

1.7.3 Approach 3

Observation

Suppose Monster i can win over the entire array, then there exists at least one sequence of

battles such that the Monster i only battles against the Monster who won in the range [1, i−1]

and the range [i+ 1, N].

4

https://pastebin.com/wG7TLpTs
https://pastebin.com/WUVzDN6X
https://pastebin.com/ntxiKZFd

Non-Formal Proof

Without loss of generality, assume Monster i is of Fire type. Then, the only bad case is when

the winner in the range [1, i−1] is Water type, but Monster i battling some Monsters between

the other battles can change the winner type in the range [1, i− 1].

However, if Monster i beats some Grass Monster, it only helps Water Monsters in the range

[1, i−1] to win. Further, if Monster i beats some Fire Monster, then it might help some Grass

Monsters to win; however, if this is true, it also means the winner in the range [1, i− 1] could

already be Fire type.

Try to come up with a formal proof for the last statement.

Solution

Using the approach above, we can conclude that calculating dp(l, r, t) defined as whether a

Monster of type t can win in the range [l, r] is sufficient to calculate the answer. For calculat-

ing the answer, a Monster of type i (say it is Fire type) can win if and only if either Grass or

Fire types can win in both the ranges [1, i− 1] and [i+1, N]. This gives us a O(N3) solution

with the slowest step being that of calculating the DP. Code

This can even be sped up to O(N2). Instead of considering all possible midpoints, just

considering the first and last positions of each type in the interval [l, r] to be the midpoint

values is sufficient. This reduces the time complexity to O(6N2) = O(N2). However, we do

not currently have a proof for this. Code

1.8 Greedy Simulation

We can fix a Monster we want to be the winner and then greedily try to create a sequence of

battles which are beneficial for it.

Suppose we want Monster i of Fire Type to win. Then, below is the optimal order of choosing

which battle we should have next where the best choice is listed first.

1. Battles between adjacent Pokemon of equal types, since these battles don’t affect any-

thing.

2. Battles between an adjacent pair of Water Monster and Grass Monster since they will

remove Water Monsters, which pose the most danger to our chosen Monster.

3. Battles between an adjacent pair of Fire Monster and Water Monster since they will make

the Water Monsters more accessible to the Grass Monsters. (Note that this Fire Monster

should not be our chosen Monster.)

4. Battles between an adjacent pair of Fire Monster and Grass Monster. We want to have

as few of these battles as possible because we need the Grass Monsters to remain in the

line to defeat the Water Monsters.

5

https://pastebin.com/mPz5983e
https://pastebin.com/GFiFiZGe

Naively implementing the algorithm works in O(N3) as we have to try all N Monsters, then

have a total of N −1 battles, and each time find the most beneficial adjacent battle by check-

ing O(N) pairs manually.

We can also speed this up to O(N2 · logN) by keeping a priority queue of adjacent battles

sorted by most beneficial to least beneficial. Then, when a Monster gets defeated, we need to

consider the next and previous non-defeated Monsters of this one, make them adjacent, and

insert that pair into the priority queue.

1.9 Finding a Necessary and Sufficient Condition

A powerful way of solving this problem is finding a necessary condition for Monster i to win,

and then also showing that it is sufficient, or vice versa. This approach can be helpful in many

types of problems.

1.9.1 Necessary Condition

For a Fire type Monster i to win, if there is a Water type in the range [1, i − 1], there must

also be a Grass Type in the range [1, i − 1]. Similarly, if there is a Water type in the range

[i+ 1, N], there must also be a Grass type in the range [i+ 1, N].

In general, replace Water by type that can beat the Monster i and Grass by type that Monster

i beats. This condition is also sufficient for Monster i to win as we prove below.

1.9.2 Proof of Sufficiency

Suppose we want Monster i to win, who is Fire type. Divide the battles into several stages:

1. Repeatedly, while there is at least one pair of adjacent Fire and Water Monsters (where

the Fire Monster in question is not 1), the two battle and the Fire Monster loses. After

all possible such battles, if it is possible for 1 to win, every contiguous group of Water

Monsters must be adjacent to a Grass Monster.

2. Repeatedly, while there is at least one adjacent pair of Grass and Water Monsters, battle

the two and the Water Monster loses. The effect of this is that now there are only Fire

and Grass Monsters left.

3. Monster i defeats all other Monsters.

Thus, the condition is sufficient as we see that Monster i is able to win when the condition is

true.

1.9.3 Alternative Proof of Sufficiency Using Induction

Suppose we want Monster i to win, who is Fire type. First of all, don’t consider equal adjacent

Monsters (to make the analysis simpler), further assume that i = 1 (so we only need to care

about the suffix).

6

Consider the first position where Ai = G, the string up to i then looks like FWFW....G. We

can reduce this prefix to just FG by doing the following inductive steps :

• Base Case : i = 2, the string is already FG.

• if Ai−1 = F, battle Monster (i − 2) and Monster (i − 1) (which are W and F type

respectively), thus reduces to a (i− 1) case.

• if Ai−1 = W, battle Monster (i−1) and Monster (i) (which are W and G type respectively),

thus reduces to a (i− 1) case.

• Hence, by induction, we have reduced the prefix to FG.

Now, by a similar inductive casework argument, we can show that the FG prefix can always be

conserved while N is greater than 3.

• If A3 = W, battle Monster 2 and Monster 3 (which are G and W type respectively), thus

reduces to a (N − 1) case.

• If A3 = F, A4 = G, battle Monster 2 and Monster 3, the string now looks like FFG.....

Battle Monster 1 and Monster 2 (and make Monster 1 win) and the string again looks

like FG...., thus reduces to a (N − 2) case.

• if A3 = F, A4 = W, battle Monster 3 and Monster 4, thus reduces to a (N − 1) case.

• Hence, by Induction, we can always keep the FG prefix till we are left with either N = 2,

A = FG, or N = 3, A = FGW or N = 3, A = FGF.

For all of the 3 cases in the final base cases, we can easily see that the Monster 1 of F type

can win. Hence, the condition is sufficient.

1.9.4 Solution

A Fire Monster wins if and only if both its prefix and suffix either have no Water Monsters or

at least one Grass Monster. A naive implementation of this check for each Monster yields a

O(N2) solution. This can be sped up to O(N) by performing one left-to-right sweep to find

information about all the prefixes, and another right-to-left sweep to find information about

all the suffixes.

1.10 Subtask 11 (16 points): No additional constraints

We consider the number of Fire Monsters that cannot win. Subtracting that number from the

total number of Fire Monsters gives us the number of Fire Monsters who can win.

A Fire Monster cannot win when either its prefix or its suffix contains a Water Monster but

does not contain a Grass Monster. Let Wmin, Wmax, Gmin, Gmax be the first and last posi-

tions among Water and Grass Monsters respectively. A Fire Monster i is bad if and only if

Wmin < i < Gmin (the prefix is bad) or Gmax < i < Wmax (the suffix is bad). Note that a

7

Monster cannot be bad under both conditions as long as there exists at least one Grass type,

so we don’t double count.

We can find all these four positions by either keeping a set of indices where Monsters of a

certain type exist, or by calculating the next/previous position where a Monster of a certain

type exists using a dynamic programming approach. After we have those values, we can simply

subtract the number of Fires in a specific interval, which can be done with prefix sums. The

time complexity is O(N +Q).

Be careful while handling the following edge cases: Wmin > Gmin, Wmax < Gmax, there are

no Water types in the range [l, r], there are no Grass types in the range [l, r].

8

2 Fertilizer

Author: Paras Kasmalkar

Preparation: Shreyan Ray, Paras Kasmalkar, Soumyaditya Choudhuri

Abridged statement: There are F fields, numbered from 1 to F . There are N trips, where

i-th trip is a range of fields is from Li to Ri, where 1 ≤ Li ≤ Ri ≤ F . You are given Q

queries, where the j-th query consists of integers Xj and Yj . For each query, output the

number of fields contained in the union of trips Xj , Xj + 1 . . . Yj .

Constraints:

• 1 ≤ F ≤ 106.

• 1 ≤ N ≤ 5 · 105.

• 1 ≤ Li ≤ Ri ≤ F for all 1 ≤ i ≤ N .

• 1 ≤ Q ≤ 106.

• 1 ≤ Xj ≤ Yj ≤ Q for all 1 ≤ j ≤ Q.

Subtasks:

• Subtask 1 (4 points) F,Q,N ≤ 200.

• Subtask 2 (5 points) F,Q,N ≤ 2000. Further, Xj = 1 for all 1 ≤ j ≤ Q.

• Subtask 3 (8 points) F,Q,N ≤ 2000.

• Subtask 4 (5 points) N ≤ 105. Further, Ri < Li+1 for all 1 ≤ i < N .

• Subtask 5 (8 points) N ≤ 105. Further, Li < Li+1 and Ri < Ri+1 for all 1 ≤ i < N .

• Subtask 6 (10 points) N,Q ≤ 2 · 104.

• Subtask 7 (8 points) N,Q ≤ 5 · 104. Further, Li = Ri for all 1 ≤ i ≤ N .

• Subtask 8 (15 points) N ≤ 105. Further, Xj ≤ Xj+1 and Yj ≤ Yj+1 for all 1 ≤ j < Q.

• Subtask 9 (17 points) N ≤ 105.

• Subtask 10 (19 points) No additional constraints.

2.1 Subtask 1: (4 points) F,Q,N ≤ 200

For each query, we can iterate through the O(N) trips performed, and for each trip, we can

iterate through the O(F) fields covered. For each query, we maintain a counter array for all

the fields, which starts at 0. When we simulate each trip, we increment the counter of all the

covered fields by 1, and then the answer to the query is the total number of non-zero indices

in the counter array.

The time complexity is O(Q · F ·N).

9

2.2 Subtask 2: (5 points) F,Q,N ≤ 2000. Further, Xj = 1 for all

1 ≤ j ≤ Q.

In this subtask, all the queries involve a prefix of the trips, so we can incrementally add trips

from left to right and for each trip, count the number of newly added fields in O(F), again

using the above counter approach.

The time complexity is O(N · F +Q).

2.3 Subtask 3: (8 points) F,Q,N ≤ 2000

Here, we need to improve the solution to subtask 1. Instead of maintaining a counter array,

we maintain a set of all the fields that have not been covered by at least one trip. When we

run a query, for each trip we can use the lower bound function to repeatedly remove the first

uncovered field at or after Li, provided that it is not after Ri.

The time complexity is O(Q · (N + F) logF).

2.4 Subtask 4: (5 points) N ≤ 105. Further, Ri < Li+1 for all

1 ≤ i < N .

In this subtask, no two trips share any fields. So, the answer to each query is the sum of

numbers of fields covered by each trip. We can compute this efficiently using a prefix sum

array.

The time complexity is O(N +Q).

2.5 Subtask 5: (8 points) N ≤ 105. Further, Li < Li+1 and Ri < Ri+1

for all 1 ≤ i < N .

In this subtask, the trips follow an important property. Each field, if it is covered by any trip,

will be covered by an interval of trips. That is, for each field z which is covered at least once,

there will be some i1, i2, such that the trips i1, i1 + 1, . . . i2 are exactly the set of trips which

cover field z.

This means that we simply need to count the number of fields which are covered at least once

by any trip and lie in the range LXj
, LXj

+1, . . . RYj
. This can again be counted using prefix

sums.

The time complexity is O(F +N +Q).

2.6 Subtask 6: (10 points) N,Q ≤ 2 · 104

Here, we need to answer each query in O(N) without any log factor. We can sort all the trips

once at the beginning of the program in the order of Ri.

10

Then, for each query, we can iterate through this entire sorted list and disregard any queries

which do not belong to the query range Xj , Xj + 1, . . . Yj .

As we iterate through the trips, we can maintain the answer as follows. Let r be the largest R

value we have encountered among any trips under consideration. Then, if we encounter some

trip i, there are two cases. If r < Li, then the trip i and any trips following it will not share

any fields with the trips prior to trip i, so we can simply add the total number of fields of trip

i. Otherwise, if Li ≤ r, only the fields r+ 1, r+ 2, . . . Ri will be newly added, so we can add

Ri − r to the answer.

The time complexity is O(N logN +NQ).

2.7 Subtask 7: (8 points) N,Q ≤ 5 · 104. Further, Li = Ri for all

1 ≤ i ≤ N .

We can use Mo’s algorithm to answer all the queries efficiently. As we move through the

queries, we need to maintain a counter array for the number of trips which cover each field.

The time complexity is O((N +Q)
√
N + F).

2.8 Subtask 8: (15 points) N ≤ 105. Further, Xj ≤ Xj+1 and Yj ≤
Yj+1 for all 1 ≤ j < Q.

In this subtask, all query ranges have both endpoints in non-decreasing order. Therefore, if we

can design a data structure to answer the three following queries, we can solve the problem

with O(N) operations of this data structure:

• Add 1 to an interval.

• Subtract 1 from an interval.

• Count the number of non-zero entries in the entire array.

We can add 1 to an interval whenever our right pointer Yj advances to a new range, and

subtract 1 from an interval whenever our left pointer Xj leaves an existing range. To answer

the query at a particular time, we can just run the count query.

While the current data structure is nontrivial to design, an important step to note is that

only intervals that are already added to using some type 1 query will be subtracted from dur-

ing a type 2 query. In other words, the values in our data structure should never be below 0,

making 0 the minimum possible value that the data structure can take on at any point in time.

This allows us to change the third type of query into a query of the type: find the minimum

element in the array, and how many times it occurs. Then there will be two cases:

11

• If the minimum element is 0 and it occurs c times, the answer is N − c since there are

N − c nonzero elements which must necessarily be greater than 0, since elements cannot

end up less than 0.

• If the minimum element is greater than 0, then all N elements are nonzero and should

be included in the answer.

Note that the minimum element cannot be less than 0.

Therefore the data structure we need is a range add (note that range subtract is just a case

of range add), range minimum, and range minimum count data structure. This can be done

using a segment tree with lazy propagation. Each query to this data structure can be handled

in O(logF) time, for a total time complexity of O(N +F +Q logF) for this approach, which

is sufficient to pass this subtask.

2.9 Subtask 9: (17 points) N ≤ 105.

This subtask can be done using the divide and conquer technique. Specifically, we have a

recursive function solve(x, y, queries) where x and y represent a range of trips and

queries is an array of queries to be answered. We call solve(1, N, {1, 2, ... Q}).

Within a run of solve(x, y, queries), letm = x+y
2 . All queries with Yj ≤ m orXj ≥ m+1

can be put into queries_left or queries_right respectively, and solved with recursive calls

to solve(x, m, queries_left) and solve(m+1, r, queries_right).

This leaves the set of queries that contain the indices m and m+ 1.

The current call to solve only involves the trips in the range x . . . y. We can use coordinate

compression to reduce the number of fields under consideration to O(y − x).

For each compressed field f, we need to find the first trip equal to or to the right of m + 1

that covers this field (let this be called first_right[f]) and the first trip equal to or to the

left of m that covers this field (let this be called first_left[f]). One efficient way to do

this is to maintain a set of all the fields, iterate through the trips in increasing or decreasing

order, and for each trip extract from the set all fields that are covered by that trip.

Now, a compressed field f should be counted by a query j only if first_left[f] < Xj and

first_right[f] > Yj . We can answer all the queries offline using a Fenwick tree and the

sweep line technique. If the number of trips currently under consideration is n and the number

of queries currently under consideration is q, the time complexity for this single call of solve

is O((n + q) log n). The sum of n over all calls of solve is O(N logN) and the sum of q

over all calls of solve is Q.

The overall time complexity is O(N log2N +Q logN).

12

2.10 Subtask 10: (19 points) No additional constraints.

2.10.1 Solution 1

We use the following approach: we iterate through all the fields, and attempt to efficiently

increment the answer of all queries for which the current field should be counted.

As we iterate through all the fields z = 1, 2, . . . F , we maintain a set of trips which contain

the current field z. That is, initially this set is empty. Whenever we transition from a field z

to z+1, we add to this set all the trips i with Li = z+1 and remove all the trips i with Ri = z.

Now, consider all the queries which will cover at least one trip in this set. Let us think of the

queries as if they are points in a 2-D plane. That is, each query j is the point (Xj , Yj). For

any set of trips, the set of queries that contain at least one of them will belong to a region

that resembles a staircase, as shown in Figure 1. The diagonal line represents X = Y , and

each trip z is represented as a purple point (z, z).

Figure 1: All queries in the shaded region should be incremented by the current field.

We need to perform the following operations: insert a trip, erase a trip, and efficiently incre-

ment all the queries which belong to the current staircase region. To maintain the set of trips,

we can use the C++ std::set. When we add or remove a trip, a rectangular region will be

added to or removed from the staircase, as shown in Figure 2 and Figure 3.

We do not have the time to increment each query one by one, for each field. Instead, we look

at how queries are affected only when trips are added or removed. Whenever we start looking

at a field z and insert rectangular regions representing trips with Li = z, we can perform a

2-D range addition of −(z − 1) over each such region. Similarly, whenever we are about to

move from z to z+1 and erase rectangular regions representing trips with Ri = z, we perform

a 2-D range addition of +z over each such region.

Now, to answer any query j, we can simply look at the total amount added to the point

13

Figure 2: Inserting a trip

Figure 3: Erasing a trip

(Xj , Yj). To see why this works, observe that the set of fields which should be counted by query

j can be divided into a set of intervals (let’s say of some size cj), [l1, r1], [l2, r2], . . . [lcj , rcj].

Each interval represents a contiguous period of time when the staircase contained (Xj , Yj).

The answer to this query is then (r1 − l1 + 1) + (r2 − l2 + 2) + . . .+ (rcj − lcj + 1).

For each interval k, the above algorithm adds −(lk−1) over an area containing (Xj , Yj) when

the staircase starts to cover query j, and adds rk over an area containing (Xj , Yj) when the

staircase stops covering query j, so in total the amount added to the point (Xj , Yj) is the

total number of fields which query j should count.

We can perform these 2-D range addition and point query operations offline using a Fenwick

tree and the sweep-line technique.

The time complexity is O((N +Q) logN + F).

14

2.10.2 Solution 2

Another approach to this problem involves answering queries offline, in increasing order of Yj .

Consider that we have a data structure that maintains an array Z over the indices 1, 2, . . . F

and can perform the following operations efficiently:

• Given some range bounds l and r and a value x, set the Z value at each index in the

range l, l + 1, . . . r to x

• Given some value x (which is up to F), count the number of indices i such that Zi ≥ x.

Initially, this data structure has the value −1 at all indices. We can iterate through all the

trips in the order 1, 2, . . . N . Whenever we reach some index i, we set all values in the range

Li, Li + 1, . . . Ri to i. Notice that now, for any f the value Zf represents the latest encoun-

tered trip which covers the field f , so a query (Xj , Yj) will cover f only if Xj ≤ Zf , so to

answer a query we simply need to find the number of values in the array more than or equal

to Xj , which can be done by the second count operation of this data structure.

We now describe how to implement this data structure efficiently. We can divide the array

into contiguous homogenous intervals, and maintain it as a set of pairs of left end and value.

(Another way to implement this is to use a map.) Simultaneously, we maintain a frequency

array of the values in a Fenwick tree to answer the count queries in O(logF).

Whenever we perform a range set operation, some intervals in the set will be erased completely,

up to two intervals (containing the endpoints of the range) will be partially adjusted, and one

new interval will be inserted. At each stage, only one new interval is inserted and each interval

that is erased completely must have been inserted at some prior stage, so the total number of

removals is O(N).

The time complexity is O((N +Q) logF).

15

3 Trees

Author: Paras Kasmalkar

Preparation: Aryan Maskara, Vishesh Saraswat, Paras Kasmalkar, Shreyan Ray, Soumyaditya

Choudhuri

Abridged Statement: There are two undirected edge-weighted trees, tree X and tree Y, both

with N nodes numbered 1 . . . N . The i-th edge in tree X is between nodes Ai and Bi with

weight Ci. The j-th edge in tree Y is between nodes Uj and Vj with weight Wj . costT (p, q)

denotes the largest edge weight occurring on the unique path between p and q in tree T . Find

the number of pairs of nodes (p, q) with 1 ≤ p < q ≤ N and costX(p, q) ≤ costY (p, q).

Constraints:

• 1 ≤ N ≤ 105.

• 1 ≤ Ai, Bi ≤ N , Ai ̸= Bi, 1 ≤ Ci ≤ 109 for all 1 ≤ i ≤ N − 1.

• 1 ≤ Uj , Vj ≤ N , Uj ̸= Vj , 1 ≤ Wj ≤ 109 for all 1 ≤ j ≤ N − 1.

Subtasks:

(The Lines constraint means that (Ai, Bi) = (Ui, Vi) = (i, i+ 1).)

• Subtask 1 (4 points) N ≤ 200, Lines, C1 ≤ C2 ≤ . . . ≤ CN−1, W1 ≤ W2 ≤ . . . ≤
WN−1.

• Subtask 2 (5 points) N ≤ 200.

• Subtask 3 (8 points) N ≤ 2000.

• Subtask 4 (9 points) Lines, C1 ≤ C2 ≤ . . . ≤ CN−1, W1 ≤ W2 ≤ . . . ≤ WN−1.

• Subtask 5 (15 points) Lines

• Subtask 6 (10 points) (Ai, Bi) = (Ui, Vi), C1 ≤ C2 ≤ . . . ≤ CN−1, all Wj are equal.

• Subtask 7 (14 points) (Ai, Bi) = (Ui, Vi), C1 ≤ C2 ≤ . . . ≤ CN−1, W1 ≤ W2 ≤ . . . ≤
WN−1.

• Subtask 8 (35 points) No additional constraints.

3.1 Subtask 1: (4 points) N ≤ 200, Lines, C1 ≤ C2 ≤ . . . ≤ CN−1,

W1 ≤ W2 ≤ . . . ≤ WN−1

As both trees are lines with nodes in the order 1, 2, ...N , for any (p, q) with 1 ≤ p < q ≤ N

we have costX(p, q) = Cq−1 and costY (p, q) = Wq−1. So, we can check all possible pairs

(p, q) and count the number of pairs which satisfy the condition.

The time complexity is O(N2).

16

3.2 Subtask 2: (5 points) N ≤ 200

In this subtask, for each tree we can find the maximum weight between every pair of nodes using

the Floyd-Warshall algorithm, and again count the number of pairs which satisfy the condition.

The time complexity is O(N3).

3.3 Subtask 3: (8 points) N ≤ 2000

We can improve the time complexity by running depth first search or breadth first search, once

from each node, to find the maximum weight between every pair of nodes.

The time complexity is O(N2).

3.4 Subtask 4: (9 points) Lines, C1 ≤ C2 ≤ . . . ≤ CN−1, W1 ≤ W2 ≤
. . . ≤ WN−1.

In the solution of subtask 1, notice that if we fix the number q, for any number p such that

1 ≤ p < q, the value of costX(p, q) remains constant at Cq−1 and the value of costY (p, q)

remains constant at Wq−1.

This means that for each value of q, either all of the possibilities of (p, q) will satisfy the con-

dition or none of them will satisfy the condition. If the condition is satisfied, we can update

the answer by q − 1, for the q − 1 different possibilities of p.

The time complexity is O(N).

3.5 Subtask 5: (15 points) Lines

To check whether a pair (p, q) satisfies the condition, we only need information about the

maximum values of Ci and Wi over the interval p ≤ i ≤ q − 1.

Observe that for a given edge i, if Ci ≤ Wi, then the value Ci is essentially obsolete because in

any interval that contains this edge, the maximum edge weight will be at least Wi. Similarly,

if Ci > Wi, the value Wi is obsolete. Let Zi = max(Ci,Wi), and let the type of edge i be

Y if Ci ≤ Wi, and X if Ci > Wi.

Note that in the case where Ci = Wi, it is important that the edge is of type Y. For any pair

of nodes (p, q), if costX(p, q) = costY (p, q), the pair must be counted in the answer. So, we

can break the tie between Ci and Wi by considering Ci to be smaller.

We can iterate through all possible values of p from N − 1 to 1 in decreasing order. As we

do this, we will maintain information about how the maximum values change as we increase

q from p+ 1 to N . We can use a stack to store the list of all visited indices i for which Zi is

greater than all Zj with p ≤ j < i. (Again, we break ties between equal C and W values by

17

considering the C value to be smaller.)

We can maintain such a stack as follows. Initially, let the stack be empty. Then, as we iterate

through all i (such that 1 ≤ i ≤ N − 1) in decreasing order, while the stack is not empty and

the top edge in the stack is smaller than the i-th edge, we pop from the stack. Then, we push

the i-th edge to the top of the stack.

At any time, for some number q, (p, q) satisfies the original condition only if the largest weight

edge in the stack to the left of q is of type Y. By keeping track of the sum of number of nodes

between every adjacent pair of edges in the stack where the left edge is of type Y, we can find

the number of valid q. To get the final answer, we need to add up the number of valid q over

all the steps of this algorithm.

The time complexity is O(N).

3.6 Subtask 6: (10 points) (Ai, Bi) = (Ui, Vi), C1 ≤ C2 ≤ . . . ≤ CN−1,

all Wj are equal.

In this subtask, costY (p, q) is equal to W1 for all pairs (p, q). So, we only need to count the

number of (p, q) with costX(p, q) ≤ W1. We can do this by computing the set of connected

components in the subgraph of tree X consisting of only those edges i with Ci ≤ W1.

Within a connected component of size s, all pairs of nodes satisfy the condition and there are(s
2

)
= s(s−1)

2 pairs of nodes. We can add up this quantity over all components to find the

answer.

The time complexity is O(N).

3.7 Subtask 7: (14 points) (Ai, Bi) = (Ui, Vi), C1 ≤ C2 ≤ . . . ≤ CN−1,

W1 ≤ W2 ≤ . . . ≤ WN−1.

In this subtask, the two trees have the same N − 1 edges, and crucially, the edge weights are

in the same relative order in both trees.

In tree X, imagine that there are initially no edges, and we iterate through the edges in in-

creasing order of edge weight and add them to the tree one by one. We can observe that for

some pair of nodes (p, q), the largest-weighted edge between them in the original tree is the

edge which when added to the tree creates a path between p and q for the first time. If the

newly added edge e connects two different connected components c1 and c2, the number of

pairs (p, q) for which costX(p, q) is defined by edge e is size(c1) · size(c2). Of course, such a

property also holds in tree Y.

Since both trees have the same N−1 edges, the two trees will have the same set of connected

components at every stage of the above algorithm (where stage is defined by the number of

18

edges added to that particular tree).

Consider that the edges in both trees are interleaved together and sorted by edge weight (while

breaking ties in such a way that edges from tree X occur before edges from tree Y) and we

add these edges to the trees in this order. If two components c1 and c2 are merged in tree

X before they are merged in tree Y, we have identified size(c1) · size(c2) pairs of nodes which
satisfy the condition, so we can add c1 · c2 to the answer. We can find such pairs of nodes

whenever we add an edge from tree X but the corresponding edge from tree Y has not been

added.

To perform this quickly, we can efficiently add edges to a tree and maintain information about

its connectivity using the small-to-large technique. We can maintain a list of nodes for every

connected component. At the start, each node belongs to its own component. When two

components are merged, we need to transfer all the nodes from the list of one component to

the list of the other component. We always move nodes from the smaller list to the bigger

list. If we do this, whenever a node is moved to another list, the size of the list it belongs to

at least doubles, so each node will be moved at most ⌊log2N⌋ times.

The data structure which uses this principle to maintain connectivity about a graph is called

the disjoint set union (DSU) or union find data structure.

The time complexity is O(N logN).

3.8 Subtask 8: (35 points) No additional constraints.

We use a similar approach to the previous subtask: we interleave the edges and sort them

by weight, and add them to the trees in this order. Whenever an edge of tree Y is added

and connects some two components c1 and c2, all the pairs of nodes (p, q) which satisfy the

condition in the problem statement have been merged in tree X already. We need to find the

number of such pairs at every stage to compute the answer.

We use the small-to-large technique from the previous subtask but maintain some more infor-

mation. For every component c of tree Y, we group the nodes in it by their present component

ID in tree X. We can maintain a set of pairs of component ID in tree X and number of occur-

rences. We only include those components of X with at least one occurrence, so this set of

pairs has size less than or equal to the number of nodes in c.

Consider that we are merging two components c1 and c2 in tree Y, and assume without loss

of generality that size(c1) ≤ size(c2). We can iterate through all the pairs in the set of c1.

If we find some pair whose component ID is also present in the set of c2, we can multiply

the number of occurrences in these pairs and add this quantity to the final answer. When we

move all the pairs from the set of c1 to the set of c2, we need to merge all such pairs with the

same tree X component ID by adding their frequencies together and leaving only a single pair

in the set.

19

Whenever two components in tree X are merged, we move all the nodes from the list of the

smaller component to the list of the bigger component. As we do this, we can update the

component ID of all the moved nodes, which will cause some stored pairs in the sets of com-

ponents of tree Y to be incorrect. If x nodes are moved to another list in tree X, some O(x)

pairs of component ID and frequency will be incorrect, so we can fix them one by one. As this

happens, some pairs in the same component of tree Y may have the same tree X component

ID, so we again need to merge all such pairs.

Because of the small-to-large principle, we only move elements to new sets O(N logN) times,

and if we use a balanced binary search tree such as the C++ std::set or std::map, each

move operation can be done in O(logN).

The time complexity is O(N log2N).

20

4 Contest Report

The contest was scheduled to begin at 2:00 pm IST, but was delayed due to minor technical

difficulties to 2:10 pm IST. The contest began successfully at 2:10 pm IST.

There were two notable issues with the problems during in the contest:

• Sample testcases for Problem 3, ”Trees”, were incorrectly uploaded to Problem 2, ”Fer-

tilizer”. This was corrected 21 minutes into the contest, at 2:31 pm IST.

This issue did not affect any solutions submitted to the platform, or any solutions tested

locally using the samples in the problem statement. The only affected feature was the

”Run Code” feature on the editor on the platform.

• Sample testcase 1 for Problem 1, ”Monsters”, was either missing or failed to render on

the contest platform. This was corrected 25 minutes into the contest, at 2:35 pm IST.

This issue did not affect any solutions submitted to the platform, or any solutions tested

locally using the samples in the problem statement. The only affected feature was the

”Run Code” feature on the editor on the platform.

Since both issues did not affect any contest submissions or any local testing, there was no

contest extension made in either case.

There was also a minor issue:

• In the statement of Problem 1, ”Monsters”, in some instances ”operation” was inadver-

tently used instead of ”thought experiment”. No clarifications regarding this were raised

during the contest, and this issue wasn’t detected until after the end of the contest. The

problem statement has since been corrected on Codedrills.

The scientific committee will work to avoid such errors in the future.

21

5 Scientific Committee

The problem setting committee consisted of, in alphabetical order:

• Aryan Maskara, International Institute of Information Technology, Hyderabad

• Jishnu Roychoudhury, Princeton University

• Paras Kasmalkar, University of Wisconsin-Madison

• Shreyan Ray, Indian Institute of Technology, Kharagpur

• Soumyaditya Choudhuri, Carnegie Mellon University

• Vishesh Saraswat, International Institute of Information Technology, Hyderabad

22

6 Cutoffs

6.1 Medals

Medal Cutoff Medalists

Gold 156 10

Silver 128 20

Bronze 78 30

6.2 Qualification to IOITC 2024

Grade Male Cutoff Female Cutoff

12 141 71

11 141 71

10 123 71

9 and below 113 71

Female students with a score of 53 or above are eligible to participate in the EGOI Team

Selection Tests, which will be conducted prior to the IOI Training Camp. The four members

who are selected for the EGOI team will also qualify for the IOI Training Camp, in case they

are not already included in the cutoffs above.

7 Statistics and Anonymized Ranking

A total of 191 contestants participated in this contest, obtaining a total of 93 distinct scores

out of 300 possible points. This section features the breakdown of results by problem, subtask,

and over the whole contest.

7.0 Overall Statistics

• Number of participants: 191

• Minimum score: 0

• Maximum score: 300

• Number of participants with positive score: 182

• Number of participants with full score: 1

• Mean score: 60.05

• Median score: 38

• Number of distinct scores: 93

23

7.1 Monsters: Problem Statistics

• Minimum score: 0

• Maximum score: 100

• Number of participants with positive score: 163

• Number of participants with full score: 7

• Mean score: 31.58

• Median score: 16

• Number of distinct scores: 16

The following table summarizes the number of participants who solved each subtask.

Subtask Solves

1 163

2 134

3 109

4 74

5 58

6 58

7 57

8 51

9 47

10 69

11 7

7.2 Fertilizer: Problem Statistics

• Minimum score: 0

• Maximum score: 100

• Number of participants with positive score: 151

• Number of participants with full score: 2

• Mean score: 18.79

• Median score: 18

• Number of distinct scores: 21

24

The following table summarizes the number of participants who solved each subtask.

Subtask Solves

1 144

2 133

3 126

4 71

5 40

6 10

7 26

8 9

9 3

10 2

7.3 Trees: Problem Statistics

• Minimum score: 0

• Maximum score: 100

• Number of participants with positive score: 92

• Number of participants with full score: 1

• Mean score: 9.68

• Median score: 0

• Number of distinct scores: 15

The following table summarizes the number of participants who solved each subtask.

Subtask Solves

1 92

2 44

3 34

4 61

5 3

6 22

7 10

8 1

25

7.4 Anonymized Ranking

Rank Total Score Monsters Fertilizer Trees

1 300 100 100 100

2 265 100 100 65

3 229 100 64 65

4 198 84 64 50

5 181 100 31 50

6 173 84 39 50

7 168 68 64 36

8 165 58 81 26

9 159 84 39 36

10 156 84 49 23

11 153 84 46 23

12-13 149 84 39 26

12-13 149 84 23 42

14 148 100 31 17

15-16 147 58 39 50

15-16 147 58 39 50

17 146 100 23 23

18 144 78 39 27

19-24 141 84 31 26

19-24 141 84 31 26

19-24 141 84 31 26

19-24 141 84 31 26

19-24 141 84 31 26

19-24 141 84 31 26

25 133 84 31 18

26 130 84 23 23

27 129 48 31 50

28-30 128 84 31 13

28-30 128 84 31 13

28-30 128 84 31 13

31-34 127 78 23 26

31-34 127 84 39 4

31-34 127 68 23 36

31-34 127 84 39 4

35 123 78 31 14

36 120 84 18 18

37 119 84 9 26

38 117 58 23 36

39 115 84 18 13

40 113 78 18 17

41 111 84 18 9

26

42 110 78 28 4

43 109 78 31 0

44 107 84 23 0

45 106 58 31 17

46 105 100 5 0

47-48 102 84 18 0

47-48 102 84 18 0

49 101 78 23 0

50 98 58 31 9

51-52 96 78 18 0

51-52 96 78 18 0

53 90 22 41 27

54 84 84 0 0

55 83 78 5 0

56 81 16 39 26

57 80 62 18 0

58-60 78 78 0 0

58-60 78 21 31 26

58-60 78 78 0 0

61-62 71 27 18 26

61-62 71 27 31 13

63 68 27 23 18

64 66 62 4 0

65-67 63 27 23 13

65-67 63 27 23 13

65-67 63 27 23 13

68 61 15 23 23

69 58 22 23 13

70-71 57 22 31 4

70-71 57 9 31 17

72-73 56 0 43 13

72-73 56 16 31 9

74-75 53 27 13 13

74-75 53 22 31 0

76-78 52 16 23 13

76-78 52 21 18 13

76-78 52 21 31 0

79-80 51 16 18 17

79-80 51 15 23 13

81 50 22 15 13

82-83 48 21 23 4

82-83 48 4 31 13

84 46 15 18 13

85 45 4 28 13

86 42 15 18 9

27

87-90 40 22 18 0

87-90 40 9 18 13

87-90 40 22 18 0

87-90 40 9 18 13

91-93 39 21 18 0

91-93 39 9 26 4

91-93 39 21 18 0

94-96 38 15 23 0

94-96 38 16 18 4

94-96 38 16 18 4

97 37 15 18 4

98 36 0 23 13

99 35 22 0 13

100-104 34 16 18 0

100-104 34 16 18 0

100-104 34 16 18 0

100-104 34 16 18 0

100-104 34 16 18 0

105-106 33 15 18 0

105-106 33 11 18 4

107-108 32 9 23 0

107-108 32 22 10 0

109-110 31 0 18 13

109-110 31 0 18 13

111-112 30 0 13 17

111-112 30 4 26 0

113-114 29 16 0 13

113-114 29 16 4 9

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

115-124 27 9 18 0

125-126 26 0 26 0

125-126 26 4 18 4

127 25 16 9 0

128 24 16 4 4

129 23 0 23 0

130-138 22 4 18 0

130-138 22 4 18 0

28

130-138 22 4 18 0

130-138 22 4 18 0

130-138 22 4 18 0

130-138 22 4 18 0

130-138 22 4 18 0

130-138 22 4 5 13

130-138 22 4 18 0

139-140 21 21 0 0

139-140 21 21 0 0

141 20 16 0 4

142-148 18 0 18 0

142-148 18 0 18 0

142-148 18 0 18 0

142-148 18 0 18 0

142-148 18 0 18 0

142-148 18 0 18 0

142-148 18 0 18 0

149-150 17 9 4 4

149-150 17 11 6 0

151-157 16 16 0 0

151-157 16 16 0 0

151-157 16 16 0 0

151-157 16 16 0 0

151-157 16 16 0 0

151-157 16 16 0 0

151-157 16 16 0 0

158-160 15 15 0 0

158-160 15 15 0 0

158-160 15 11 4 0

161-162 13 9 4 0

161-162 13 4 0 9

163 12 4 4 4

164 11 11 0 0

165 10 0 10 0

166-169 9 9 0 0

166-169 9 9 0 0

166-169 9 9 0 0

166-169 9 9 0 0

170-171 8 4 4 0

170-171 8 0 4 4

172 6 0 6 0

173-182 4 4 0 0

173-182 4 4 0 0

173-182 4 0 4 0

173-182 4 4 0 0

29

173-182 4 0 4 0

173-182 4 4 0 0

173-182 4 4 0 0

173-182 4 4 0 0

173-182 4 4 0 0

173-182 4 4 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

183-191 0 0 0 0

30

	Monsters
	Subtask 1 (4 points): Q = 1, Only Fire Monsters
	Subtask 2 (5 points): Q = 1, No Grass Monsters
	Subtask 10 (6 points): No Grass Monsters
	Subtask 3 (7 points): Q = 1, N = 3
	Subtask 4 (5 points): Q = 1, N 35. Further, there are at most 2 pairs of adjacent Monsters who are of different types.
	Subtasks 5 - 9 (11 + 10 + 10 + 10 + 16 points): Q = 1, N 35 to N 105
	Dynamic Programming
	Approach 1
	Approach 2
	Approach 3

	Greedy Simulation
	Finding a Necessary and Sufficient Condition
	Necessary Condition
	Proof of Sufficiency
	Alternative Proof of Sufficiency Using Induction
	Solution

	Subtask 11 (16 points): No additional constraints

	Fertilizer
	Subtask 1: (4 points) F, Q, N 200
	Subtask 2: (5 points) F, Q, N 2000. Further, Xj = 1 for all 1 j Q.
	Subtask 3: (8 points) F, Q, N 2000
	Subtask 4: (5 points) N 105. Further, Ri < Li+1 for all 1 i < N.
	Subtask 5: (8 points) N 105. Further, Li < Li+1 and Ri < Ri+1 for all 1 i < N.
	Subtask 6: (10 points) N, Q 2 104
	Subtask 7: (8 points) N, Q 5 104. Further, Li = Ri for all 1 i N.
	Subtask 8: (15 points) N 105. Further, Xj Xj+1 and Yj Yj+1 for all 1 j < Q.
	Subtask 9: (17 points) N 105.
	Subtask 10: (19 points) No additional constraints.
	Solution 1
	Solution 2

	Trees
	Subtask 1: (4 points) N 200, Lines, C1 C2 …CN-1, W1 W2 …WN-1
	Subtask 2: (5 points) N 200
	Subtask 3: (8 points) N 2000
	Subtask 4: (9 points) Lines, C1 C2 …CN-1, W1 W2 …WN-1.
	Subtask 5: (15 points) Lines
	Subtask 6: (10 points) (Ai, Bi) = (Ui, Vi), C1 C2 …CN-1, all Wj are equal.
	Subtask 7: (14 points) (Ai, Bi) = (Ui, Vi), C1 C2 …CN-1, W1 W2 …WN-1.
	Subtask 8: (35 points) No additional constraints.

	Contest Report
	Scientific Committee
	Cutoffs
	Medals
	Qualification to IOITC 2024

	Statistics and Anonymized Ranking
	Overall Statistics
	Monsters: Problem Statistics
	Fertilizer: Problem Statistics
	Trees: Problem Statistics
	Anonymized Ranking

