
Zonal Computing Olympiad 2024

Editorial and Results

Indian Computing Olympiad Scientific Committee

April 7, 2024

1 Vegetables

Author: Soumyaditya Choudhuri

Preparation: Aryan Maskara, Paras Kasmalkar, Shreyan Ray

Abridged statement: There are two arrays of positive integers, A and B, both of length

N . In one operation, you can select any positive element from either array and decrement it

by one. The score is the value of
∑N

i=1Ai × Bi after all operations. What is the minimum

possible score you can achieve after applying at most Xj operations? Find the answer for Q

different values of Xj .

Constraints:

• 1 ≤ N,Q ≤ 2 · 105.

• 1 ≤ Ai, Bi ≤ 106 for all 1 ≤ i ≤ N .

• 1 ≤ Xj ≤ 109 for all 1 ≤ j ≤ Q.

Subtasks:

• Subtask 1 (7 points) Q = 1, Xj = 1, N ≤ 10, Ai ≤ 103, Bi ≤ 103.

• Subtask 2 (6 points) Q ≤ 3, Xj ≤ 3, N ≤ 10.

• Subtask 3 (9 points) Ai = 1, N ≤ 103, Q ≤ 103.

• Subtask 4 (7 points) Ai = 1.

• Subtask 5 (18 points) N,Q,Xj ≤ 30.

• Subtask 6 (15 points) N,Q,Xj ≤ 400.

• Subtask 7 (16 points) N,Q ≤ 103.

1

• Subtask 8 (7 points) The sum of all Ai does not exceed 2 · 105. Also, the sum of all Bi

does not exceed 2 · 105.

• Subtask 9 (7 points) Xj ≤ 2 · 105.

• Subtask 10 (8 points) No additional constraints.

1.1 Subtask 1: (7 points) Q = 1, Xj = 1, N ≤ 10, Ai ≤ 103, Bi ≤ 103

In this subtask, we are only allowed one operation. There are 2 · N possibilities for this

operation, and we can try all of them and compute the final score in O(N) time for each one.

The time complexity is O(N · (N +M)).

1.2 Subtask 2: (6 points) Q ≤ 3, Xj ≤ 3, N ≤ 10

In this subtask, we can brute force using recursion to try all possibilities of operations. We

can try every sequence of operations. There are at most 2N different operations in each step,

and there are at most three allowed operations. Therefore, the time complexity is O(N3) per

query for a total of O(QN3).

1.3 Subtask 3: (9 points) Ai = 1, N ≤ 103, Q ≤ 103

In this subtask, all Ai values are 1. Observe that for any index i, we can use a single opera-

tion on Ai and reduce the contribution of index i to 0. This causes a reduction in the total

score of Bi. Also, notice that withN or more moves, it is possible to reduce the total score to 0.

Notice that it is always optimal to reduce the Ai value for which the corresponding Bi value

is maximum. Therefore, we can sort the array of B values in descending order, and we should

take the first Xj values to decrease by. This sorting will take O(N logN) time.

For each query, we can find the largest Xj values of Bi and compute their total reduction in

at most O(N) time.

The time complexity is O(Q ·N +N logN).

1.4 Subtask 4: (7 points) Ai = 1

This subtask requires an optimized version of the solution to Subtask 3. We can take the

prefix sums of the sorted B array in the previous subtask. This allows us to answer any query

in constant time.

The time complexity is O(N logN +Q).

2

1.5 Subtask 5: (18 points) N,Q,Xj ≤ 30

Notice that for each term, only the number of moves made on each of the Ai and the Bi

terms matter.

We can use dynamic programming to solve this subtask. Let dp[i][u] represent the minimum

sum of the first i terms if u upgrades have been used so far.

The base case is that the sum of the first 0 terms is 0, regardless of the number of upgrades

performed. That is, dp[0][u] = 0 for all u.

For the transition, we can iterate over x, the number of upgrades performed on A, and y, the

number of upgrades performed on B. Then, the total number of moves made is x + y. We

must ensure that A[i] >= x and B[i] >= y before trying this move, as well as u >= x + y.

dp[i][u] = max{dp[i-1][u - x - y] + (A[i] - x) * (B[i] - y) | all valid x, y}

There are O(X ·X) transitions to consider from each state, and a total of O(N ·X) states.

Therefore, the total complexity per query is O(NX3), for a total complexity of O(QNX3).

This can be trivially optimised to O(NX3) by not recomputing the DP table every query,

given that all answers can be precomputed. However, this optimisation is not necessary to

solve this subtask.

1.6 Subtask 6: (15 points) N,Q,Xj ≤ 400

For a given index i with values Ai and Bi (assume without loss of generality that Ai ≤ Bi),

consider the two following cases:

• Case 1: Make x moves on Ai, make y moves on Bi.

• Case 2: Make x+ y moves on Ai.

Note that it may be possible to perform case 1 for a given x and y but impossible to perform

case 2. We will temporarily ignore the restriction that A and B must be non-negative in order

to demonstrate the result.

The final contribution of the term in each case is:

• Case 1: (Ai − x) · (Bi − y) = Ai ·Bi − y · Ai − x ·Bi + xy (denote this by d1)

• Case 2: (Ai − x− y) ·Bi = Ai ·Bi −Bi(x+ y) (denote this by d2)

We claim that d2 ≤ d1.

This is not hard to see as d1 − d2 = xy + y(Bi − Ai), which is non-negative since Bi ≥ Ai

and x and y must both be non-negative. Note that when x+ y moves cannot be used on Ai,

it means it get reduced to 0 beforehand, and thus there is no point doing any further moves

on this index.

Hence, its optimal to use all moves on either Ai or Bi (whichever is smaller). This optimizes

our dynamic programming to only need O(X) transitions, thus leading to a O(NX2) solution.

Note that unlike the previous subtask, you will need to precalculate all the values beforehand.

3

1.7 Subtask 7: (16 points) N,Q ≤ 103

Note that from the previous subtasks, we only apply the moves to the minimum among Ai

and Bi. Again, without loss of generality, assume Ai ≤ Bi.

Let us consider the reduction in the term Ai · Bi when we apply one operation on Ai. The

new value is (Ai − 1) · Bi, which is smaller by Bi. Thus, if we only had one upgrade possi-

ble, then its optimal to do it on the index with maximum value of Bi (again assuming Ai ≤ Bi).

This leads us to an greedy algorithm : Use moves on the maximum value of Bi until you

exhaust it (i.e. when the corresponding Ai goes to 0). We can prove that this greedy is

correct via Exchange Arguments.

For this subtask, the only thing left to do is sort indexes according to Bi (descending order)

and use as many upgrades as possible on the first index, then the second index (if there are

still upgrades left) and then the third and so on.

Time Complexity is O(N ·Q)

1.8 Subtask 8: (7 points) The sum of all Ai does not exceed 2 · 105.
Also, the sum of all Bi does not exceed 2 · 105

Let us try to optimize our subtask 7 solution. Note that since the sum of A values and the

sum of B values are both bounded by 2 · 105, after at most 2 · 105 upgrades, we can get the

water requirement to 0.

Thus, we only need to simulate all upgrades, and store the answers for all of them. We can

perform the greedy algorithm once, and at each step store the sum of Ai ·Bi.

When answering queries, we simply check if the number of upgrades allowed is greater than

the number of simulated steps; if it is, then the answer is 0. Otherwise, we can read the value

from our array of simulated results. Then the complexity is O(S +Nlog(N) + Q), where S

is bounded by 2 · 105.

1.9 Subtask 9: (7 points) Xj ≤ 2 · 105

The solution is the same as subtask 8, but the total number of upgrades possible might exceed

2 · 105. However, since only the first 2 · 105 upgrades are queried about, it is sufficient to

simply simulate the first 2 · 105 upgrades.

Complexity is O(max{Xj}+N logN +Q), and note that max(Xj) is bounded by 2 · 105 for

this subtask.

4

1.10 Subtask 10: (8 points) No additional constraints

Let Ci denote the answer for a query with i updates. Note that the value of Ci+1−Ci changes

at a maximum ofN points (i.e. when an index gets exhausted and we move on to the next one).

First, consider Ai ≤ Bi for all indices, and further the indices are sorted by Ai. Then Di

denote
∑i

j=1Bj . Then, for x = Di, the value of Cx+1 − Cx changes from Bi to Bi+1.

Let us store the values of Di and the corresponding the sums of the array. Now suppose k

is the last index such that Dk ≤ Xj and Sk is the corresponding memoized sum. Then, the

answer is simply Sk − (Xj −Dk) · Bk+1 because from Dk onwards, the value of Ci+1 − Ci

is Bk+1 and it only changes again at Dk+1 (which we haven’t reached yet, since we defined

k to be the last index).

To implement this, you can use a map to store the memoized results, and binary search to

find the relevant value of k. Alternatively, you can store two parallel prefix sum arrays and

binary search on the arrays.

The time complexity is O(N logN +Q logN).

5

2 Fruits

Author: Soumyaditya Choudhuri

Preparation: Aryan Maskara, Paras Kasmalkar, Shreyan Ray

Abridged statement: There is a N by M grid of integers, where each integer is from 1 to

K. The distance between two cells on the grid is defined as the Manhattan distance between

the two cells. Handle Q queries of the following two types: Query type 1 updates the value

of a cell in the grid to some new value. Query type 2 gives you two distinct integers between

1 and K, call them U and V , and asks you to find the maximum distance between a cell with

number U and a cell with number V .

Constraints:

• 1 ≤ N,M ≤ 3 · 105.

• 2 ≤ K ≤ N ·M ≤ 3 · 105.

• 1 ≤ Q ≤ 2 · 105.

Subtasks:

• Subtask 1 (7 points) : Q = 1, N ·M ≤ 100

• Subtask 2 (8 points) : Q = 1, N ·M ≤ 500.

• Subtask 3 (13 points) : Q = 1, N ·M ≤ 2000.

• Subtask 4 (18 points) : Q = 1.

• Subtask 5 (12 points) : N = 1 and there will be no operations of type 1.

• Subtask 6 (9 points) : N = 1.

• Subtask 7 (13 points) : N ≤ 5 and there will be no operations of type 1.

• Subtask 8 (12 points) : There will be no operations of type 1.

• Subtask 9 (8 points) : No additional constraints.

2.1 Subtask 1 (7 points) : Q = 1, N ·M ≤ 100

This subtask is intended to reward various less efficient versions of the solutions to future

subtasks. One example is using a Dijkstra in place of a BFS in Subtask 2.

6

2.2 Subtask 2 (8 points) : Q = 1, N ·M ≤ 500.

Consider a graph where the nodes are the fields, and there is an edge between every pair of

adjacent fields. There are potentially O(NM) fields that grow fruit U , and O(NM) fields

that grow fruit V , for a total of O((NM)2) pairs. For each such pair, we can find the shortest

path between them in O(NM) using a BFS.

The time complexity is O((NM)3).

2.3 Subtask 3 (13 points) : Q = 1, N ·M ≤ 2000.

Because the graph is a grid, the distance between any two cells (x1, y1) and (x2, y2) is the

Manhattan distance between them, |x1 − x2| + |y1 − y2|. This can be computed in O(1).

We can check the Manhattan distance between all possible pairs of fields.

The time complexity is O((NM)2).

2.4 Subtask 4 (18 points) : Q = 1.

2.4.1 Solution 1

For each field with fruit U , we can find the farthest field with fruit V in each quadrant indi-

vidually (that is, top-left, top-right, bottom-left and bottom-right), and then take the largest

distance among these.

Here, we describe how to find the farthest field in the top-left quadrant. We can use an

identical algorithm in different directions to find the farthest fields in the other quadrants.

Consider a field (x1, y1) with fruit U . For all fields (x2, y2) in the top-left quadrant, we have

x2 ≤ x1 and y2 ≤ y1. So, the Manhattan distance between the two fields is (x1−x2)+ (y1−
y2) = (x1 + y1)− (x2 + y2).

In order to find the farthest field in the top-left quadrant, we need to find the field with the

smallest possible value of x2 + y2. So, the problem reduces to finding the smallest value of

x2 + y2 among fields growing fruit V for the top-left quadrant of every field.

This can be done using dynamic programming. Let dp[i][j] be the smallest value of x2+y2
among fields growing fruit V such that 1 ≤ x2 ≤ i and 1 ≤ y2 ≤ j (or infinity, if such a field

does not exist). We can compute this DP using the following recurrence:

dp[i][j] =

{
i + j, if dp[i-1][j] == ∞ and dp[i][j-1] == ∞
min(dp[i-1][j], dp[i][j-1]), otherwise

The time complexity is O(NM).

7

2.4.2 Solution 2

An alternative solution to this subtask involves simply finding, for each combination of fruit

(from 1 to K) and each corner (top-left, bottom-left, top-right, bottom-right), the closest

fruit of each type to each corner. Then, this reduces the candidates to just four cells per fruit

(one for each corner). It is sufficient to check only these candidates, so a total of 4× 4 = 16

pairs can be searched. Finding these 4 items for each fruit can be done in O(N · M) time,

and the overall complexity of this solution is also O(N ·M).

2.5 Subtask 5 (12 points) : N = 1 and there will be no operations

of type 1.

This subtask requires an important observation. Consider some two fruits U and V . In the

optimal pair of cells, let the field growing fruit U be (1, a) and the field growing fruit V be

(1, b). The distance between a and b is |a− b|.

Without loss of generality, assume that i < j. If there is some cell smaller than a that grows

fruit U , then it is optimal to switch a to that cell, so the current pair (a, b) is not optimal. This

implies that a must be the leftmost field growing fruit U . Similarly, b must be the rightmost

cell growing fruit V .

For each fruit, only the leftmost and rightmost cells are relevant. We can compute these cells

for each color in the beginning. While answering a query, we can check O(1) pairs of cells.

The time complexity is O(M +Q).

2.6 Subtask 6 (9 points) : N = 1.

The solution is the same as subtask 5, but we can maintain the set of fields containing each

fruit in a balanced binary search tree such as the C++ std::set or std::multiset (de-

pending on implementation), which enables efficient updates.

The time complexity is O(M logM +Q logM).

2.7 Subtask 7 (13 points) : N ≤ 5 and there will be no operations

of type 1.

We can use a similar solution to subtask 5, except we need to store the leftmost and rightmost

locations of each fruit for each row and also consider all pairs of rows when trying to find the

answer.

The time complexity is O(N2(M +Q)).

8

2.8 Subtask 8 (12 points) : There will be no operations of type 1.

We extend the idea from subtask 5 to two dimensions.

The absolute value of any number z is |z| = max(z,−z). Consider two cells (x1, y1) and

(x2, y2). The Manhattan distance between them, |x1 − x2| + |y1 − y2|, can be written in

another form:

|x1 − x2|+ |y1 − y2| = max(x1 − x2, x2 − x1) + max(y1 − y2, y2 − y1)

= max((x1 − x2 + y1 − y2), (x1 − x2 + y2 − y1), (x2 − x1 + y1 − y2), (x2 − x1 + y2 − y1))

= max((x1+y1)−(x2+y2), (x1−y1)−(x2−y2), (x2−y2)−(x1−y1), (x2+y2)−(x1+y1))

= max(max((x1 + y1)− (x2 + y2), (x2 + y2)− (x1 + y1)),max((x1 − y1)− (x2 − y2), (x2 −
y2)− (x1 − y1)))

= max(|(x1 + y1)− (x2 + y2)|, |(x1 − y1)− (x2 − y2)|)

We can simply find the maximum possible value of |(x1 + y1)− (x2 + y2)| among all pairs of

cells and the maximum possible value of |(x1 − y1)− (x2 − y2)| among all pairs of cells, and

take the maximum of both of these to find the answer.

The problem of finding the maximum possible value of |(x1 + y1)− (x2 + y2)| is very similar

to subtask 5, and we use the same idea of precomputing the minimum and maximum x + y

values for all fruits. We need to do a similar precomputation for |(x1 − y1)− (x2 − y2)|. It is
also possible to derive this solution via a precomputation of Solution 2 to subtask 4.

The time complexity is O(NM +Q).

2.9 Subtask 9 (8 points) : No additional constraints.

Similar to Subtask 6, we can use sets to enable efficient updates in the solution of Subtask 8.

The time complexity is O(NM log(NM) +Q log(NM)).

9

3 Scientific Committee

The problem setting committee consisted of, in alphabetical order:

• Aryan Maskara, International Institute of Information Technology, Hyderabad

• Jishnu Roychoudhury, Princeton University

• Paras Kasmalkar, University of Wisconsin-Madison

• Shreyan Ray, IIT Kharagpur

• Soumyaditya Choudhuri, Carnegie Mellon University

10

4 Results and Statistics

A total of 313 contestants participated in this contest, obtaining a total of 51 distinct scores

out of 200 possible points. This section features the breakdown of results by problem, subtask,

and over the whole contest.

4.1 Vegetables: Problem Statistics

This problem was scored out of a possible 100 points. The statistics are given below:

• Maximum score: 100

• Minimum score: 0

• Mean score: 28.6

• Median score: 13

• Distinct scores: 19

The following table summarises the number of participants who solved each subtask of this

problem:

Subtask Participants solving this subtask

1 218

2 145

3 102

4 67

5 117

6 105

7 47

8 36

9 37

10 30

The following table summarises the score distribution on this problem:

Score Contestants at this score Contestants at or above this score Ranks

100 30 30 1-30

92 1 31 31

85 1 32 32

78 8 40 33-40

76 3 43 41-43

71 7 50 44-50

62 15 65 51-65

55 9 74 66-74

47 1 75 75

11

46 31 106 76-106

40 3 109 107-109

31 8 117 110-117

29 6 123 118-123

23 6 129 124-129

22 5 134 130-134

16 7 141 135-141

13 17 158 142-158

7 60 218 159-218

0 95 313 219-313

4.2 Fruits: Problem Statistics

This problem was scored out of a possible 100 points. The statistics are given below:

• Maximum score: 100

• Minimum score: 0

• Mean score: 15.9

• Median score: 0

• Distinct scores: 15

The following table summarises the number of participants who solved each subtask of this

problem:

Subtask Participants solving this subtask

1 119

2 117

3 117

4 16

5 53

6 25

7 22

8 13

9 11

The following table summarises the score distribution on this problem:

Score Contestants at this score Contestants at or above this score Ranks

100 11 11 1-11

92 1 12 12

83 1 13 13

80 1 14 14

71 1 15 15

12

62 5 20 16-20

53 2 22 21-22

49 7 29 23-29

46 1 30 30

40 20 50 31-50

28 67 117 51-117

19 1 118 118

12 3 121 119-121

7 1 122 122

0 191 313 123-313

4.3 Overall Score Distribution

Score Contestants at this score Contestants at or above this score Ranks

200 10 10 1-10

192 1 11 11

172 1 12 12

162 5 17 13-17

149 3 20 18-20

146 1 21 21

145 1 22 22

140 6 28 23-28

129 2 30 29-30

128 3 33 31-33

127 1 34 34

124 1 35 35

120 1 36 36

118 5 41 37-41

116 1 42 42

106 1 43 43

104 2 45 44-45

102 3 48 46-48

100 1 49 49

99 3 52 50-52

94 1 53 53

90 10 63 54-63

83 5 68 64-68

80 1 69 69

74 9 78 70-78

71 1 79 79

69 2 81 80-81

68 2 83 82-83

63 2 85 84-85

62 3 88 86-88

13

59 2 90 89-90

57 3 93 91-93

56 1 94 94

55 5 99 95-99

51 1 100 100

50 2 102 101-102

47 1 103 103

46 22 125 104-125

44 3 128 126-128

41 7 135 129-135

40 1 136 136

35 7 143 137-143

31 5 148 144-148

28 10 158 149-158

23 3 161 159-161

22 2 163 162-163

19 1 164 164

16 3 167 165-167

13 10 177 168-177

7 51 228 178-228

0 85 313 229-313

14

5 Cutoffs for qualification to INOI 2024

Grade Male Female

12 55 35

11 51 35

10 50 35

9 46 28

8 41 28

7 and below 41 28

15

